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Resumo

Neste trabalho o fenómeno de escalarização espontânea de buracos negros com carga é estudado no con-

texto de modelos Einstein-Maxwell scalar (EMS). Este fenómeno ocorre devido a um acoplamento não-

mı́nimo entre os campos escalar e de Maxwell, e não requer acoplamentos do campo escalar a invariantes

de curvatura, pelo que apresenta uma simplificação técnica em relação à escalarização que se conjec-

tura em modelos extended-Scalar-Tensor-Gauss-Bonnett (eSTGB). Primeiro, estudamos a escalarização

espontânea no contexto de buracos negros puramente eléctricos, e observamos que diferenças aparecem

quando mudamos o acoplamento não-mı́nimo. De seguida, um estudo similar é efectuado para buracos

negros diónicos, onde existem soluções extremas, e fazemos uma comparação com o caso do buraco negro

dilatónico. Por fim, generalizamos os modelos EMS para inclúır um acoplamento do tipo axiónico e

mostramos que escalarização espontânea é posśıvel a partir deste tipo de acoplamento. Também é feito

um estudo de buracos negros com cabelo axiónico. Em todos os casos, estudamos os perfis radiais, a esta-

bilidade perturbativa e o domı́nio de existência de buracos negros fundamentais esfericamente simétricos

e obtemos, em particular, a sua entropia, que mostra que os buracos negros escalarizados são sempre en-

tropicamente preferidos em relação ao buraco negro de Reissner-Nordström com o mesmo rácio de carga

sobre massa. São também apresentados resultados de simulações dinâmicas, que mostram que os buracos

negros escalarizados se formam dinamicamente. Alguns dos resultados obtidos nesta tese aparecem nas

refs. [1, 2].

Palavras-chave: Buracos negros com carga; Escalarização espontânea; Campo escalar; Einstein-

Maxwell scalar; Cabelo escalar; Axião.
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Abstract

In this work the phenomenon of spontaneous scalarization of charged black holes (BHs) is studied in the

framework of Einstein-Maxwell scalar (EMS) models. This phenomenon is allowed by a non-minimal

coupling between the scalar and the Maxwell fields, and does not require non-minimal couplings of the

scalar field to curvature invariants, which presents a technical simplification over the BH scalarization

that has been conjectured to occur in extended Scalar-Tensor Gauss-Bonnet (eSTGB) models. First we

study spontaneous scalarization in the context of purely electric BHs and verify what differences emerge

when the non-minimal coupling is changed. Next, a similar study is performed in the context of dyonic

BHs where extremal solutions emerge and a comparison with the dilatonic BH case is done. Finally a

generalisation of EMS models to include an axionic-like coupling is done. It is shown that spontaneous

scalarization through an axionic-like coupling can occur and a study of BHs with axionic hair is done. In

all cases we obtain and study the radial profiles, the perturbative stability, and the domain of existence

of fundamental, spherically symmetric, scalarized BHs and compute, in particular, their entropy. The

latter shows that scalarized EMS BHs are always entropically preferred over the Reissner-Nordström BHs

with the same total charge to mass ratio. Furthermore, results of fully non-linear dynamical evolutions

are also presented, showing that scalarized BHs do form dynamically. Part of the results obtained for

this thesis appear in refs. [1, 2].

Keywords: Charged black holes; Spontaneous scalarization; Scalar fields; Einstein-Maxwell

scalar; Scalar hair; Axion.
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Chapter 1

Introduction

1.1 General Relativity

Upon the beginning of the XXth century it was clear, from observational and theoretical evidence, that

the Newtonian theory of gravity was not the ultimate theory of gravitation [3]. For instance, Newtonian

gravity could not explain the observed anomalous perihelion advance of Mercury and was not compatible

with special relativity [4].

In 1915, Albert Einstein published the final form of his field equations in a theory that became known

as General Relativity (GR). GR provided an explanation for gravity as the curvature of spacetime, caused

by the presence of matter [3] (eq. 1.1)

Gµν ≡ Rµν −
1

2
gµνR = κTµν , (1.1)

where Rµν and R are respectively the Ricci tensor and the Ricci scalar (that are purely geometric

quantities that depend solely on the metric gµν), κ = 8πG
c4 the coupling constant (with G the Newtonian

gravitational constant and c the speed of light in a vacuum), and Tµν the energy-momentum tensor that

describes the presence of matter. Apart from equation 1.1, geometric units (4πG = c = 1) will be adopted

throughout this work, as well as the metric signature (−,+,+,+).

GR could explain the anomalous perihelion advance of Mercury, and predicted phenomena such as

the bending of light by massive objects, the gravitational redshift of light, which turned out to be true

with observational evidence agreeing with the theory [4]. GR also predicts the existence of black holes,

which are strongly supported by experimental evidence.

Nowadays it is clear that GR is not the ultimate theory of gravitation. GR and quantum mechanics

(QM) are incompatible and in a regime where both are relevant we are unable to make predictions.

Moreover, GR predicts the existence of singularities that in no sensible way can be considered physical,

while it is also unable of explaining dark matter and dark energy on its own. It is widely believed that a

theory of quantum gravity is needed.
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1.2 General Relativity via a Variational Principle

1.2.1 Lagrangian Mechanics

Obtaining the equations of motion of a system is a central task when studying physical theories. Such

equations of motion may elegantly be determined via a variational principle.

To describe a classical system with a discrete number of components, one may use Lagrangian me-

chanics instead of the Newtonian approach [5]. Lagrangian mechanics is based on a variational principle,

the principle of least action, that may be mathematically represented by the simple equation

δS = 0, (1.2)

where S is the action that describes the system, which is defined as

S =

∫
Ldt, (1.3)

with L ≡ L(q, q̇) the lagrangian of the system, which is a function of the generalized coordinates q and

respective derivatives. In classical mechanics, L is simply given by the kinetic energy minus the potential

energy of the system. Using the principle of least action, one can obtain the Euler-Lagrange equations

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0. (1.4)

When applied to a physical system, the Euler-Lagrange equations become the equations of motion of

that system, describing its physical configurations.

1.2.2 Classical Field Theory

Lagrangian mechanics is used for a system with a discrete number of components, each with a finite

number of degrees of freedom. If the system to be studied is a continuum/field with an infinite number of

degrees of freedom, classical field theory must be used. Instead of a lagrangian L, in classical field theory

a lagrangian density L ≡ L(φi, ∂φi) is used, and this lagrangian density depends on the fields φi ≡ φi(xµ)

and its derivatives [5], which depend on the spacetime point. The action and Euler-Lagrange equations

may be written as

S =

∫
d4x
√
−gL, (1.5)

∂L
∂φi

= ∂µ

(
∂L

∂ (∂µφi)

)
. (1.6)

1.2.3 General Relativity as a Field Theory

The EFEs can be obtained via a variational principle, as the equations of motion of a theory described

by the Einstein-Hilbert action [3, 6]
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Figure 1.1: Penrose diagram for the Schwarzschild BH with the future (and past) EH and the future (and
past) null infinity represented. Source: [10]

S =

∫
d4x
√
−g
(

1

2κ
R+ LM

)
, (1.7)

by performing the variations with respect to the metric. The term LM is a matter term that defines the

energy momentum tensor Tµν by

Tµν = − 2√
−g

δSM
δgµν

= −2
δLM
δgµν

+ LMgµν . (1.8)

1.3 Black Holes

In 1784, using Newtonian mechanics, John Mitchel and Pierre-Simon Laplace [7] calculated that there

could exist sufficiently massive and compact objects such that the respective escape velocity would exceed

the speed of light. Such objects were named ”dark stars”.

In 1916, Karl Schwarzschild discovered the first non-trivial vacuum solution of the EFEs, that also

describes a black hole (BH), known as the Schwarzschild metric. BHs emerge as a prediction of GR and

are objects so compact that are characterised by a hypersurface known as event horizon (EH). The region

of spacetime enclosed by the EH is causally disconnected from the exterior Universe and constitutes the

BH [6, 8, 9].

Definition 1.3.1 ([10]). Event Horizon: Let M be an asymptotically flat spacetime. We define J−(U)

to be the causal past of points U ⊂ M and J
−

(U) to be the topological closure of J−(U) (i.e., including

limit points). Define the boundary of J
−

(U) to be J̇−(U) = J
−

(U) − J−(U). The future EH of M is

then

H+ = J̇−
(
=+
)
, (1.9)

with =+ the future null infinity, i.e., the future EH is the boundary of the closure of the causal past of

=+.

The Schwarzschild metric, that describes the simplest known BH, is given in Schwarzschild coordinates
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(t, r, θ, φ) by [9, 10]

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (1.10)

where M is interpreted as the ADM mass of the BH. The metric has two singularities, where the coef-

ficients gtt and grr diverge, being the hypersurfaces r = 0 and r = 2M . The singularity r = 2M is just

a consequence of a deficiency of the used coordinate system and it can be removed by an appropriate

change of coordinates (being called removable singularity for this reason), while the r = 0 singularity is

irremovable. In fact, it can be proved that the Kretschmann scalar RαβµνRαβµν diverges at r = 0 [10].

It can also be proved [9, 10] that the hypersurface r = 2M ≡ rS is the EH of the Schwarzschild BH, with

rS being called the Schwarzchild radius.

If an electromagnetic field is considered in the theory, i.e., LM = − 1
4FµνF

µν in equation 1.7, with

Fµν = ∂µAν − ∂νAµ the usual Maxwell tensor (and Aµ the electromagnetic 4-potential) [9], one obtains

an energy-momentum tensor given by

TEMµν = FµαF
α
µ −

1

4
gµνFαβF

αβ , (1.11)

and so, the source-free Einstein-Maxwell Field Equations (EMFE) are [10]

Gµν = 2TEMµν , (1.12)

∇µFµν = 0. (1.13)

The EMFEs have the spherically-symmetric Reissner-Nordström (RN) solution [10]

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

dr2(
1− 2M

r + Q2

r2

) + r2
(
dθ2 + sin2 θdφ2

)
, (1.14)

A =
Q

r
dt, (1.15)

that describes an electrically charged BH with mass M and electric charge Q.

The most general solution of the EMFEs is known as the Kerr-Newman metric, that describes a

rotating BH with mass M , angular momentum J , electric charge Q and magnetic charge P and is given

in Boyer-Lindquist coordinates (t, r, θ, φ) by [11]

ds2 = −∆

Σ

[
dt− a sin2 θdφ

]2
+

sin2 θ

Σ

[(
r2 + a2

)
dφ− adt

]2
+

Σ

∆
dr2 + Σdθ2, (1.16)

A = −
[
Q
r

Σ
+ P

a cos θ

Σ

]
dt+

[
Q
ar sin2 θ

Σ
+ P

(
±1− cos θ

r2 + a2

Σ

)]
dφ, (1.17)

where Σ = r2 +a2 cos2 θ, ∆ = r2−2Mr+a2 +Q2 +P 2 and a = J
M . The Schwarzschild and RN solutions

can be obtained from the Kerr-Newman metric in the appropriate limits. A particularly important case

occurs in the limit where there is neither electric nor magnetic charge, for which the Kerr metric is
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Figure 1.2: First image of a BH shadow (center of the M87 galaxy). Source: [15]

obtained [12].

1.3.1 Observation and Astrophysical Formation of Black Holes

Although predicted by GR, it is legitimate to ask whether BHs actually do exist in Nature. One can argue

that, even though observations support the existence of BHs [13], their existence is not proved, and so,

only BH candidates could be listed (objects that resemble BHs but are not proved as so). However, in the

last years a diversity of observational data has been delivering information with unprecedented accuracy

on the strong gravity region around these objects including, for instance, the gravitational waves events

that have been observed as a result of BH binaries inspiral and merger (see a catalogue of gravitational

wave events, as of February 2019 in [14]). Another direct observational evidence for the existence of BHs

comes from the first image of a BH shadow from the center of the M87 galaxy (fig. 1.2) by the Event

Horizon Telescope Collaboration [15] (see e.g. [16] for a review on BH shadows).

It is believed that BHs are the endpoints of stellar evolution. Nuclear fusion occurs in stars, and

the released energy is able to balance the stars’ gravity. However, once the nuclear reactions in the star

start to fuse iron, the energy that balances the stars’ gravity ceases to exist, and the star undergoes

gravitational collapse. The gravitational collapse can lead into one of three (known) possible states, that

are mainly determined by the stars’ mass M : a white dwarf, a neutron star or a BH [9, 17].

1. If M . 1.4M�, with M� the mass of the sun, then the endpoint is a white dwarf. This result is

known as the Chandrasekhar limit [18].

2. If 1.4M� .M . 3M�, the endpoint is a neutron star [9].

3. If M & 3M�, then a BH is the endpoint of stellar evolution. This result is known as the Tol-

man–Oppenheimer–Volkoff (TOV) limit [19, 20].

1.3.2 No-Hair Theorems

The Kerr metric is widely considered as the astrophysical relevant BH solution of the EFEs and it is

thought to describe astrophysical BHs. This led to a paradigm which is commonly referred to as the

”Kerr hypothesis”, that states that the Kerr metric provides an exact representation of all the BHs in
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the Universe. In the words of Subramanian Chandrasekhar [21]: ”In my entire scientific life, extending

over forty-five years, the most shattering experience has been the realization that an exact solution of

Einstein’s field equations of general relativity, discovered by the New Zealand mathematician, Roy Kerr,

provides the absolutely exact representation of untold numbers of massive black holes that populate the

Universe.”. The Kerr hypothesis relies on two main steps:

1. In the late 1960s and the early 1970s a set of mathematical results known as the ”uniqueness

theorems” (see [22, 23] for reviews on the uniqueness theorems) established that the most general

physical BH solution in (electro-)vacuum is represented by the Kerr(-Newman) solution.

2. Inspired by the uniqueness theorems, a much more ambitious idea known as the no-hair conjecture,

put forward by John Wheeler and Remo Ruffini [24] that generalizes the uniqueness theorems to

non-(electro-)vaccum. The no-hair conjecture states that, regardless of the type of matter/energy

one starts with, gravitational collapse leads to BHs that are totally described by their mass, angular

momentum (and electric charge), all of which are asymptotically measured quantities subject to

a Gauss law, and have no other defining quantities referred to as hair. In other words, the no-

hair conjecture states that the only type of BHs that can emerge dynamically are Kerr BHs (it

is thought that electric charge is not relevant in astrophysical BHs). Two BHs with the same

mass and angular momentum will be exactly equal, making BHs remarkably different of any other

macroscopic object. For instance, two stars may have equal masses and angular momenta, but

these may be distributed in different ways across the stars, a difference which will be manifest in

the higher multipole moments of the gravitational field. For two BHs with equal masses and angular

momenta, all higher multipole moments of the gravitational field will coincide, although they are

non-trivial [25].

However the no-hair conjecture is not a proved fact, and there must be some skepticism and questions

should be asked about whether may be other good alternative BH models. Three broad criteria for a

good BH model are:

1. Appear as a solution of a well motivated and consistent physical model.

2. Has a dynamical formation mechanism.

3. Is sufficiently stable.

One of the most widely studied types of hairy BHs are BHs with scalar hair. These BHs assume

the existence of a scalar field in the theory that is intimately connected with the BH. There are a set

of well established no-hair theorems for scalar fields, but these may be evaded by relaxing some of their

assumptions in a smart way. A review on the no-scalar-hair theorems, as well as on the known regular

(on and outside the EH) asymptotically flat BH solutions with scalar hair, can be found in [26].

But why is scalar hair so widely studied? Asking ”why scalar hair?” is tantamount equivalent to

asking ”why scalar fields?”. Scalar fields were proved to exist in Nature with the discovery of the Higgs

boson [27, 28] and constitute a proxy to describe different types of realistic matter. Scalar fields also
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appear in several models, from cosmology (for the evolution of the Universe e.g. the ”inflaton” and

as candidates for dark matter [29]) to extensions of the standard model (e.g. the axion, to solve the

strong CP problem [30]). Thus, scalar fields are both motivated by fundamental theories and a useful

phenomenological tool.

1.4 Spontaneous scalarization

A dynamical mechanism that could lead to the formation of BHs that differ from the standard GR (electro-

)vacuum BHs is spontaneous scalarization . Spontaneous scalarization is a phenomenon through which

an unstable object becomes immersed in a non-trivial, asymptotically vanishing scalar-field configuration

(similar to spontaneous magnetization in ferromagnetic materials [31]). It was first proposed by Damour

and Esposito-Farèse in the context of neutron stars [32–34]. Remarkably, spontaneous scalarization is

not exclusive of neutron stars as it is conjectured to occur in other objects like BHs (which result in hairy

BHs with scalar hair), as pointed out in the original works [35–37], nor it is not exclusive of gravitational

theories! As an introduction, a toy model from [38] shall be followed.

1.4.1 A toy model: spontaneous scalarization of a charged sphere

Consider the following scalar field action on a non-trivial background (electromagnetic field) in flat

(Minkowski) spacetime

Sφ = −
∫
d4x
√
−g [2∂µφ∂

µφ+ f(φ)I] , (1.18)

with I = FµνF
µν , Fµν the usual Maxwell tensor, φ the scalar field and f(φ) the coupling function. For

spontaneous scalarization to occur three conditions are required:

1. Maxwell’s theory must be recovered near infinity (since the scalar field is asymptotically vanishing).

2. The system must allow the existence of a scalar free solution (so that a scalar field may spontaneously

emerge).

3. The system must undergo an instability (in this case, it must be unstable against scalar perturba-

tions δφ).

From the Euler-Lagrange equations, the scalar field equation of motion may be obtained:

�φ =
ḟ(φ)I

4
, (1.19)

with � ≡ ∂µ∂
µ, the dot denotes differentiation with respect to the scalar field. Equation 1.19 may be

linearized around a scalar free solution for scalar perturbations

(
�− µ2

eff

)
δφ = 0, (1.20)

with µ2
eff = f̈(0)I/4 acting as an ”effective mass”. From equations 1.19 and 1.20, the restrictions on
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the form of the coupling function may be extrapolated, in order for spontaneous scalarization to occur.

From the previous three conditions:

1. f(φ(∞)) = f(0) = 1, in order to recover Maxwell’s theory near infinity.

2. ḟ(0) = 0, from equation 1.19 to allow the existence of a scalar free solution.

3. f̈(0) > 0, from equation 1.20, in order to have µ2
eff < 0, so that a tachyonic instability can settle

in the system (for a purely electrical field I < 0).

The system allows a scalar free solution given by

φ = 0, A =
Q

r
dt, (1.21)

which is the Coulomb solution. Consider also, in appropriate units the following coupling function that

satisfies the previous conditions

f(φ) =
1

1− φ2
, (1.22)

and so, the scalar free solution is unstable against scalar perturbations. The model then admits the

spherically symmetric scalarized solution given by

φ = ζ sin

(
Q

r

)
, A =

[(
1− ζ2

2

)
Q

r
+
ζ2

4
sin

(
2Q

r

)]
dt, (1.23)

where ζ is an integration constant. Defining the energy density as ρ = −T tt , then the total energy is

given by

E = 4π

∫ ∞
r0

r2ρ dr. (1.24)

Consider now a conducting sphere at r = r0, and defining the energies of the scalar free and scalarized

solutions as E(φ=0) and E(φ 6=0) respectively one obtains

E(φ 6=0) − E(φ=0) = 4πζ2Q sin

(
2Q

r0

)
, (1.25)

which implies that the scalarized solution is energetically favoured in a set of bands

Q

r0
∈]nπ +

π

2
, nπ + π[, (1.26)

with n ∈ N0 an integer that labels the bands and defines the number of nodes of the scalar field radial

profile. Within these bands the unstable scalar free system is likely to evolve into the more stable

scalarized system. A few conclusions may be taken from this example:

1. We emphasise again that spontaneous scalarization is not exclusive of gravitational theories.

2. It sometimes leads to more stable configurations.

3. It can occur through non-minimal couplings of the scalar field to a source term (like the electro-

magnetic field).
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4. The coupling function must obey some specific conditions in order for spontaneous scalarization to

occur.

1.4.2 Spontaneous scalarization of black holes

Spontaneous scalarization is conjectured to occur in BHs. This area of research was triggered by the

works [35–37], where spontaneous scalarization occurs through non-minimal couplings of the scalar field

to higher order curvature terms, namely the Gauss-Bonnet (GB) term G.

1.4.2.1 The Gauss-Bonnet term and Lovelock gravity

A possible generalisation of GR includes adding higher order curvature correction terms to the action,

but these will usually include third-order equations of motion which yield additional dynamical degrees

of freedom and other pathologies. There is however one exception that generalises GR to an arbitrary

number of dimensions while maintaining the equations of motion to second order. This exception is called

Lovelock Gravity [39] and is a generalisation of the Einstein-Hilbert lagrangian to an arbitrary number

of dimensions

L =

p∑
n=0

αnRn, Rn =
1

2n
δµ1ν1...µnνn
α1β1...αnβn

n∏
r=1

Rαrβrµrνr , (1.27)

where Rn is the nth Euler density (which is a topological invariant in D = 2n dimensions), δ is the

generalized Kronecker delta, D = 2p + 2 for an even number of dimensions and D = 2p + 1 for an odd

number, where p is an integer. Expanding the above expression for five dimensions yields

L = α0 + α1R+ α2G, (1.28)

where R2 = G is the Gauss-Bonnet (GB) term:

G = R2 − 4RµνR
µν +RµναβR

µναβ . (1.29)

The Einstein-Hilbert lagrangian plus a constant that plays the role of a cosmological constant is

recovered in four dimensions. In this four-dimensional case, if one insists to add the GB term to the

action, the integral over the GB term is a topological invariant, so it cannot contribute to the dynamics,

hence GR is recovered. In higher dimensions this term becomes dynamically non-trivial.

In the context of scalar-tensor theories of gravity, the addition of the GB term to the theory, non-

minimally coupled to a scalar field, constructs the class known as extended Scalar-Tensor Gauss-

Bonnet models (eSTGB). Moreover, despite being quadratic in the Riemann and Ricci tensors, terms

containing more than two partial derivatives of the metric cancel out, making the Euler-Lagrange equa-

tions second order partial differential equations for any coupling of the scalar field to the GB term. A

recent work [40] in the context of eSTGB showed that spontaneous scalarization can occur for Kerr

BHs, and that for some values of the spin parameter, these scalarized Kerr BHs are compatible with the

observed M87 BH shadow.
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1.4.2.2 Einstein-Maxwell Scalar models

The main focus of this thesis will be the study of Einstein-Maxwell Scalar (EMS) models, first studied

in the context of spontaneous scalarization in [38]. A simple and natural generalisation of the Einstein-

Maxwell theory, i.e. electrovacuum, is to consider an additional dynamical real scalar field, forming the

EMS models. A variety of such models is possible depending on the way the scalar-field couples to the

Maxwell field.1 If the scalar-field is minimally coupled to the Maxwell field, no new BH solutions beyond

the RN BH arise, hence no hairy BHs exist. However new hairy BH solutions appear once non-minimal

couplings are considered. The first such non-minimally coupled EMS model emerged in the pioneering

unification theory of Kaluza [41] and Klein [42].

In what concerns BH spontaneous scalarization, eSTGB models belong to a wider universality class

that also contains the EMS models. EMS models allow the occurrence of spontaneous scalarization

through certain non-minimal couplings of the scalar field to the electromagnetic field. In this type of

models, no higher curvature terms are required in order for spontaneous scalarization to occur, which

results in a computationally less demanding problem, that also allows an indirect study of the involved

dynamical phenomena and processes. Since ref. [38] was published, EMS models have been further

studied in this spontaneous scalarization context [1, 43–47].

1.5 Computational shooting method: an introduction

A standard numerical technique used throughout this dissertation is the shooting method. To better

understand a shooting problem it is helpful to think of the well studied ”particle in a 1D infinite potential

well with length L” problem [48], for a particle with mass m. It consists in solving the time-independent

Schrödinger equation for the wavefunction ψ(x)

− ~2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x), (1.30)

for the potential

V (x) =

 0, 0 < x < L,

∞, otherwise,
(1.31)

which is an eigenvalue problem. The suitable boundary conditions for the problem are ψ(0) = ψ(L) = 0,

but not all values of the energy E can solve the problem - only discrete values for the energy given by

En =
n2π2~2

2mL2
, (1.32)

with n an integer that also labels the state of the particle, are the eigenvalues of the problem. This

problem has an analytical solution, but when dealing with more complicated systems solutions must be

obtained via a numerical procedure. To numerically solve this problem, using a shooting method, the

following algorithm is used: (i) decompose the Schrödinger equation into two coupled first order ordinary

1Herein we shall always consider that the scalar field is minimally coupled to gravity.
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differential equations (ODEs): 
dψ
dx = z,

dz
dx = − 2m

~2 (E − V (x))ψ,
(1.33)

but these require two initial conditions, instead of two boundary conditions, so a shooting method to

”transform” this initial value problem into a boundary value problem is required; (ii) give a known

boundary condition ψ(0) = 0, a guess for the initial value of z and two initial guesses for the energy; (iii)

solve the system for the two values of the energy using an ODE integrator and check if the wavefunction,

at the other boundary, is within an acceptable tolerance of the expected value; (iv) if it is not, using the

secant method, obtain the next iterative value for the energy

E[i+ 1] = E[i] +
ψBC(L)− ψ(L)[i]

ψ(L)[i]− ψ(L)[i− 1]
(E[i]− E[i− 1]), (1.34)

and solve the system, with i denoting the iteration variable and ψBC(L) = 0; (v) repeat until the

wavefunction value at the boundary is within an acceptable tolerance of the expected value.

This algorithm will be used when studying EMS models, where systems of coupled ODEs have to

be solved, and a shooting must be done on some essential parameters in order to fulfil the boundary

conditions.

1.6 Thesis outline

In Chapter 2 we introduce the EMS models and study spontaneous scalarization of purely electric BHs for

four different types of non-minimal couplings, namely the domain of existence, perturbative stability and

entropic preference of the scalarized solutions. In Chapter 3, EMS models and spontaneous scalarization

are studied within the framework of dyonic BHs (BHs with both electric and magnetic charge). Next,

in Chapter 4 we generalise EMS models to include an axionic-like coupling and show that spontaneous

scalarization is possible in this new model with a new source term. We study the new features that

arise and perform a study of BHs with axionic hair. Finally, Chapter 5 features the final conclusions, as

we examine the achievements of the work developed in the scope of this thesis, and we explore further

avenues of future research.
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Chapter 2

EMS models: introduction and

spontaneous scalarization of purely

electric black holes

In the present chapter a study of spontaneous scalarization of purely electric BHs in EMS models is done.

In Section 2.1 the basics of EMS models are presented. Following, in Section 2.2 some physical relations,

which include a Virial relation and a Smarr law are deduced. In Section 2.3 a discussion on the necessary

conditions for the occurrence of spontaneous scalarization is done, and the therein studied coupling

functions are presented. The bifurcating solutions from the scalar free RN BH are discussed in Section

2.4. Finally, in Section 2.5 the results are presented. In particular the numerical static solutions are

obtained and the domain of existence discussed, it is shown that for all examples of couplings considered

the scalarized BHs are thermodynamically preferred over the electro-vacuum solutions - the RN BHs with

comparable global charges, and a perturbative stability analysis is done. In Appendix A we address the

time evolution problem (whose details are beyond the scope of this thesis) and show that scalarized BHs

do form dynamically, and we also consider the time evolution of unstable RN BHs under non-spherical

perturbations to show that, in all cases, the end point is a spherically symmetric scalarized BH. In this

Chapter, refs. [1, 38] will be followed. For an aesthetic purpose that will become clearer throughout this

thesis, the Maxwell equations will be written

∇ ·E = 4πρe,

∇ ·B = 0,

∇×E = − 1
c
∂B
∂t ,

∇×B = 1
c

(
4πje + ∂E

∂t

)
,

(2.1)

13



2.1 The EMS model

The EMS model describes a real scalar field φ non-minimally coupled to Maxwell’s electromagnetism

through a function fi(φ) and minimally coupled to Einstein’s gravity, and is described by the action

S =

∫
d4x
√
−g
(
R− 2∂µφ∂

µφ− fi(φ)I(ψ, g)
)
, (2.2)

where I is a source term which generically depends on matter field(s), ψ, and the metric tensor gµν . In

EMS models the source term is I = FµνF
µν , with Fµν the usual Maxwell tensor, whereas in eSTGB

models I = G, and thus both belong to a wider universality class of models. The subscript of the

coupling function fi(φ) will denote the several coupling choices as it will later be specified. Notice that

the toy model considered in subsection 1.4.1 is the EMS action without Einstein’s gravity. The generic,

spherically symmetric, line element which can be used to describe both a scalar-free and a scalarized BH

solution is

ds2 = −N(r)e−2δ(r)dt2 +
dr2

N(r)
+ r2

(
dθ2 + sin2 θdϕ2

)
, (2.3)

(since any spherically symmetric metric can be brought to this form [49]), where N(r) = 1− 2m(r)
r , with

m(r) the Misner-Sharp mass function [50]. Spherical symmetry, in the absence of a magnetic charge,

imposes an electrostatic 4−vector potential given by

A(r) = V (r) dt, (2.4)

and a scalar field that is purely radial dependent φ(r). Integrating the trivial angular dependence allows

to define (up to an overall constant that does not affect the equations of motion) an effective lagrangian

Leff = e−δm′ − 1

2
e−δr2Nφ

′2 +
1

2
eδfi(φ)r2V

′2 . (2.5)

Recall that the functions m, δ, φ and V are solely radial dependent, and such dependence shall be omitted

for notation simplicity. The prime denotes a radial derivative. The equations of motion may be derived

from the Euler-Lagrange equations and are presented as follows

m′ =
1

2
r2Nφ

′2 +
1

2
e2δfi(φ)r2V

′2 , (2.6)

δ′ = −rφ
′2 , (2.7)(

eδfi(φ)r2V ′
)′

= 0 , (2.8)(
e−δr2Nφ′

)′
= −1

2
ḟi(φ)eδ r2V

′2 , (2.9)

where we denote ḟi = dfi/dφ (also f̈i = d2fi/dφ
2). The equations simplify as we notice the existence of

a first integral

V ′ = −e−δ Q

r2fi(φ)
, (2.10)
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with Q an integration constant interpreted as the electric charge. To solve the set of ordinary differential

equations (ODEs) 2.6-2.9 suitable boundary conditions are implemented for the functions m, δ, φ and V .

Assuming the existence of an event horizon located at r = rH > 0, in its vicinity one finds the following

approximate solution to the field equations

m(r) =
rH
2

+m1 (r − rH) + . . . , δ(r) = δ0 + δ1 (r − rH) + . . . ,

φ(r) = φ0 + φ1 (r − rH) + . . . , V (r) = v1 (r − rH) + . . . ,

(2.11)

where

m1 =
Q2

2fi(φ0)r2
H

, φ1 =
ḟi (φ0)

2rHfi (φ0)

(
Q2

Q2 − r2
Hfi (φ0)

)
,

δ1 = −φ2
1rH , v1 = − e−δ0Q

r2
Hfi (φ0)

.

(2.12)

This approximation of the field equations contains only two essential parameters φ0 and δ0 that are found,

through a standard shooting method, by matching the above expansion with the following asymptotics

in the far field

m(r) = M−Q
2 +Q2

s

2r
+. . . , φ(r) =

Qs
r

+
QsM

r2
+. . . , δ(r) =

Q2
s

2r2
+. . . , V (r) = Φ+

Q

r
+. . . ,

(2.13)

with Qs the ”scalar charge”, Φ the electrostatic potential difference between the EH and infinity and

M the ADM mass. The following results and definitions for the EMS model will be useful later

FµνF
µν = − 2Q2

r4fi(φ)2
(2.14)

K (rH) =
4

r4
H

[
3− 6Q2

r2
Hfi (φ0)

+
5Q4

r4
Hf

2
i (φ0)

]
, ρ (rH) =

2Q2

r4
Hfi (φ0) ,

(2.15)

q =
Q

M
, aH =

AH
16πM2

, AH = 4πr2
H , tH = 8πMTH , TH =

1

4π
N ′(rH)e−δ0 (2.16)

with K(rH) the Kretschmann scalar at the EH, ρ(rH) the energy density at the horizon, q the reduced

charge, aH the reduced EH area, AH being the EH area, tH the reduced horizon temperature and TH the

horizon temperature. The reduced quantities are convenient because they are invariant under the scaling

symmetry

r → λr, ξ → λξ, (2.17)

with ξ representing any quantity of the model, while fi(φ) remains unchanged.

2.2 Physical relations

It is of uttermost importance to verify that the scalarized solutions obtained when numerically solving

the coupled ODE system are indeed physical. Two relations are used to test the code: a Smarr law and

a Virial relation.
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2.2.1 Smarr law

The Smarr law [51, 52] provides a relation between the total mass of the spacetime and other measurable

quantities (like the horizon temperature, area...), hence being a physical energetic balance equation,

which is independent of the equations of motion, making it ideal to test whether the obtained solutions

are physical, or not. The Smarr law can be obtained via the integral mass formula, that for our model

reads

M =
1

2
THAH −

1

16π

∫
V

(2T ba − Tδba)KadΣb, (2.18)

where Ka is the timelike translational killing vector, and T the trace of the energy-momentum tensor.

The energy-momentum tensor is

Tµν = 4

[
fi(φ)

(
FµαF

α
ν −

1

4
gµνFαβF

αβ

)
+ ∂µφ∂νφ−

1

2
gµν∂αφ∂

αφ

]
. (2.19)

One can thus arrive at the Smarr law

M =
1

2
THAH + ΦQ, (2.20)

with

Φ =

∫ ∞
rH

dr

(
Q

r2fi(φ)
e−δ
)
≡ −

∫ ∞
rH

drV ′, (2.21)

the electrostatic potential difference. The Smarr law turns out to have no explicit imprint of the scalar

hair. The solutions also satisfy a non-linear Smarr law [38] given by

M2 +Q2
s =

1

4
T 2
HA

2
H +Q2 (2.22)

2.2.2 Virial relation

Derrick type arguments [53] can be used to establish no-hair theorems in BH physics [26], as well as

to provide a physical relation that must be obeyed and that is independent of the equations of motion,

hence providing useful insights about whether a solution is physical or not. Consider the effective action

Seff =

∫ ∞
rH

drLeff , (2.23)

and assume that hairy BH solutions exist such that they are described by the functions φ(r), δ(r), V (r),m(r)

with suitable boundary conditions at the event horizon and at infinity. Next consider the 1-parameter

family of configurations described by the scaled functions

Fλ(r) ≡ F (rH + λ(r − rH)), (2.24)

with F ∈ {φ, δ, V,m}. If the initial configuration was indeed a solution, then there must be a critical

point at λ = 1 such that the effective action is extremized:

(
dSλeff
dλ

)
λ=1

= 0. It is then straightforward
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to obtain a Virial relation given by

∫ ∞
rH

dr

{
e−δr2φ′

2
[
1− 2rH

r

(
1− m

r

)]}
=

(
Φ +

∫ ∞
rH

dr

{
2rH
r
V ′
})

Q. (2.25)

One can show that the left hand side integrand is strictly positive. Thus, the virial identity shows that

a nontrivial scalar field requires a nonzero electric charge so that the right hand side is nonzero.

2.3 Conditions for the occurrence of spontaneous scalarization

As discussed in the toy model of section 1.4.1, in order for spontaneous scalarization to occur in a model,

the coupling function (and respective derivatives) must satisfy a set of conditions. These conditions

emerge as a consequence of i) the far field equations of motion; ii) allowing the existence of a scalar free

solution; iii) imposing a tachyonic instability in the system. The coupling functions are then restrained

in the following way

1. Maxwell’s theory must be recovered near infinity, hence, for an asymptotically vanishing scalar field

profile

fi(0) = 1. (2.26)

2. The system must accommodate a scalar free solution. The Klein-Gordon equation of motion is

�φ =
ḟi(φ)FµνF

µν

4
, (2.27)

with � ≡ ∇µ∇µ, from which, in order for a non-scalarized solution to exist, follows that

ḟi(0) = 0. (2.28)

3. Spontaneous scalarization occurs if the system is unstable against scalar perturbations δφ. These

obey (neglecting second order terms)

(�− µ2
eff )δφ = 0, (2.29)

with µ2
eff < 0 given by

µ2
eff =

f̈i(0)FµνF
µν |φ=0

4
= −f̈i(0)

Q2

2r4
, (2.30)

from which f̈i(0) > 0.

In fact two Bekenstein type identities [54] can be derived, in a similar way as in [37, 47], which set

constraints on the coupling fi(φ). A first identity can be obtained by multiplying eq. 2.27 by ḟi(φ) and

integrating over a spacetime volume. Then after integrating by parts and discarding the boundary terms
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by virtue of the horizon properties and asymptotic flatness, one obtains

∫
d4x
√
−g

(
f̈i(φ)∂µφ∂

µφ+
ḟi(φ)2

4
FµνF

µν

)
= 0. (2.31)

For a purely electrical potential FµνF
µν < 0, which implies

f̈i(φ) > 0, (2.32)

must hold for some range of the radial coordinate r, otherwise the two terms of the integrand will always

have the same sign (since with our metric signature ∂µφ∂
µφ > 0 in the BH exterior), in which case the

identity can only be respected for φ = 0. The second identity can be found in a similar way, but by

multiplying eq. 2.27 by φ

∫
d4x
√
−g

(
∂µφ∂

µφ+
φḟi(φ)

4
FµνF

µν

)
= 0, (2.33)

that, once again, for a purely electrical potential implies

φḟi(φ) > 0, (2.34)

for some range of r.

2.3.1 The coupling functions

Hereby we shall consider four forms of coupling functions compatible with the above presented constraints

for spontaneous scalarization

i) an exponential coupling, fE(φ) = e−αφ
2

, first used in this context in [38];

ii) a hyperbolic cosine coupling, fC(φ) = cosh(
√

2|α|φ);

iii) a power coupling, fP (φ) = 1− αφ2, already discussed in this context for eSTGB models in [55];

iv) a fractional coupling, fF (φ) = 1
1+αφ2 .

The coupling constant α is a dimensionless constant in all cases, and, except for the hyperbolic function,

the conditions on fi imply that α < 0 for a purely electric field. The fi candidates shall be specified by

the subscript i ∈ {E, C, P, F}, respectively. For |α|φ2 � 1 (and α < 0), fE , fC and fF possess the

same Taylor expansion to first order which coincides with the (exact) form of fP :

fF (φ) ≈ fC (φ) ≈ fE (φ) ≈ 1 + |α|φ2 +O(φ4) . (2.35)
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2.4 Bifurcating points from the RN BH - The existence line for

scalarized solutions

Scalar perturbations obey eq. 2.29. Due to the spherical symmetry, performing a spherical harmonic

decomposition of the scalar field

δφ(r, θ, ϕ) =
∑
`,m

Y`m(θ, ϕ)U`(r), (2.36)

the scalar field equation of motion 2.27 simplifies to

eδ

r2

(
r2N

eδ
U ′`

)′
−
[
`(`+ 1)

r2
+ µ2

eff

]
U` = 0 , (2.37)

while µ2
eff = −|α|Q2/r4 < 0 for all previous choices of couplings. This is an eigenvalue problem: fixing the

coupling α, for a given `, requiring an asymptotically vanishing, smooth scalar field, a discrete set of BHs

solutions are selected, i.e. RN solutions with a certain charge to mass ratio q. These are the bifurcation

points from the scalar-free solution. They are labelled by an integer n ∈ N0 (that also represents the

number of nodes in the scalar field profile); n = 0 is the fundamental mode, whereas n > 1 are excited

states (overtones). One expects only the fundamental solutions to be stable [43]. Clearly, for any fi(φ),

setting δ = 0 and N(r) = 1 − 2M/r + Q2/r2 in 2.37 allows us to recover the usual RN metric. Then,

a scalarized solution can be dynamically induced by a scalar perturbation of the background, as long as

the scalar-free RN solution is in the unstable regime. As pointed out in [1, 38], for ` = 0, one finds the

following exact solution1

U(r) = LPu

[
1 +

2Q2(r − rH)

r (r2
H −Q2)

]
, where u ≡ 1

2
(
√

4α+ 1− 1) , (2.38)

and LPu being a Legendre function. The function U(r) approaches a constant non-zero value as r →∞,

U(r)→ U∞ = 2F1

1

2
(1−

√
4α+ 1),

1

2
(1 +

√
4α+ 1), 1;

q2

2
(
q2 − 1−

√
1− q2

)
+O

(
1

r

)
, (2.39)

thus finding the ` = 0 unstable mode of the RN BH reduces to a study of the zeros of the hypergeometric

function 2F1. A plot of U∞ as a function of q is given in Fig. 2.1 (left panel) for an illustrative value of

α. Some values of the minimum value of |α| for scalarization of a RN BH with charge to mass ratio q

can be found in Table. 2.1. In Fig. 2.1 (right panel) the existence lines for the n = 0 and n = 1 mode

are presented.

q 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
|α| 0.25 2.995 5.121 8.019 12.37 19.50 32.56 60.72 141.0 574.9

Table 2.1: Minimum value of |α| for scalarization of a RN BH with charge to mass ratio q.

1No exact solution appears to exist for ` > 1, and equation (2.37) is solved numerically. These modes, nonetheless, also
possess non-linear continuations leading to static, non-spherically symmetric scalarized BHs [1, 38]
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Figure 2.1: Left: Asymptotic value U∞ of the l = 0 amplitude U for α = −38 as a function of q. Right:

Existence lines for the n = 0 mode, i.e., the bifurcating points from the RN BH, and for the n = 1 mode.

2.5 Results

The set of four ODEs 2.6-2.9 can be numerically solved through a Runge-Kutta strategy, given the afore-

mentioned boundary conditions. Our numerical method implements a six(five) Runge-Kutta integration

algorithm (RK65) with an adaptative step size and a shooting method. The latter is implemented in the

unknown parameters and ensures the fulfilment of the boundary conditions. This code is written in c. It

was originally developed by Alexandre Pombo [1], who provided me the code that I later improved and

adapted.

2.5.1 Solutions of the radial profiles

Let us start by exhibiting some typical solutions obtained from the numerical integration. In Fig. 2.2

the various radial functions defining the scalarized BHs are represented for an illustrative coupling of

α = −10, charge to mass ratio q ≡ Q/M = 0.66 and for three different choices of coupling. A universal

feature of those nodeless solutions is that the scalar field is a monotonically decreasing function of the

radius. Thus the scalar field value at the horizon, φ0, is always the maximum of the scalar field. The scalar

field vanishes asymptotically. In fact, at far enough radius, all defining functions of the scalarized BHs

converge to the ones of a comparable (i.e. with the same global charges) RN BH. Another typical feature

illustrated by the figure is that the differences between the exponential and power-law couplings are small

(the same would apply to the cosh coupling, thus not shown) – see Table 2.2, and more pronounced for the

fractional coupling. Yet, for the same values of α and q the scalarization with the exponential coupling is

stronger than the one with the power law (and intermediate in the cosh one); this is visible in the value

of the scalar field at the horizon on the two top panels of the figure. We remark that these data are well

within the numerical errors: our tests have exhibited a relative difference of 10−8 for the Virial relation

and 10−7 for the Smarr relation.
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Figure 2.2: Scalarized BH radial functions for α = −10 and q = 0.66. (Left panel) fE ; (Middle panel)

fP ; (Right panel) fF . Source: [1].

fi(φ) rH M Qs Φ aH TH

fE 0.3180 0.1816 0.0167 0.3689 0.7663 0.2162

fC 0.3180 0.1816 0.0132 0.3720 0.7663 0.2156

fP 0.3180 0.1816 0.0122 0.3729 0.7663 0.2154

fF 0.3186 0.1818 0.0561 0.2848 0.7680 0.2314

Table 2.2: Characteristic quantities for scalarized BH solutions with four choices of couplings, α = −10

and q = 0.66.

For the particular case of the fractional coupling, however, a different type of solutions, that we call

exotic is possible. If 1+αφ2
0 < 0, then the corresponding solutions have a region of negative energy density

in the vicinity of the horizon, cf. eq. 2.15 and Fig. 2.3 (right panel). Moving away from the horizon, as

the value of the scalar field decreases monotonically, cf. Fig. 2.3 (left panel), it passes through the point

at which the coupling diverges. This divergence is, however, benign and the geometry is smooth therein.

This can be understood from the equations of motion, which contain 1/fF terms but no divergencies.

Moreover, beyond a certain radius the energy density becomes positive - Fig. 2.3 (right panel inset). The

negative energy region in the vicinity of the horizon leads to a decrease in the mass function profile - see

Fig. 2.3 (left panel).

2.5.2 Domain of Existence

The solution of eq. 2.37 yields a RN BH surrounded by a vanishingly small scalar field. As discussed

before, the full set of such configurations makes up the existence line which is common for all specific

coupling functions discussed herein, as they are identical for small φ. The differences in the domain of

existence of the four couplings emerge for larger values of φ, wherein non-linearities become important.

The domains of existence for the scalarized BHs with the fE , fC , fP couplings are exhibited in Fig. 2.4

(left panel). They are delimited by the existence line – (dashed blue) on which the RN BHs that support

the zero mode exist – and a critical line – (solid red) which corresponds to a singular scalarized BH

configuration that will be adressed later. In between (shaded blue regions: dark for fP , dark+medium

for fC , dark+medium+light for fE), scalarized BHs exist. In particular, for q 6 1 the usual RN BH and
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Figure 2.3: A typical scalarized BH in an EMS model with the coupling function fF , which possesses a
region with negative energy density, ρ < 0. Left: Profiles of the metric and matter functions; Right: the
energy density (zoom in presented in the inset), the Ricci and Kretschmann scalars and the inverse of
the coupling function fF (φ) which changes sign at some finite r. This plot manifests that solutions with
ρ < 0 are smooth. Source: [1].

the scalarized solutions co-exist with the same global charges. In this region there is non-uniqueness. At
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Figure 2.4: Domain of existence of scalarized BHs in EMS models (shaded blue regions). Left: fE (φ),
fC(φ) and fP (φ) couplings. Right: fF (φ) coupling. Here we only exhibit the physical region, which is
delimited by the existence line and the line at which the coupling function diverges at the horizon. The
latter is the boundary of the physical region; above it, solutions have a negative energy density in the
vicinity of the horizon. Source: [1].

the critical line, numerics suggest K,TH →∞, AH → 0, while M,Qs remain finite as seen in Fig. 2.5 for

an illustrative coupling α = −10 for fE . As another feature, along α = constant branches, q increases

beyond unity: therefore, scalarized BHs can be overcharged. Comparing the domain of existence of the

exponential, cosh and power-law couplings (Fig. 2.4, left panel) we see that they are qualitatively similar.

The critical set for the same α, however, occurs at the smallest value of q for the power law coupling, an

intermediate value for the hyperbolic coupling and the largest value of q for the exponential coupling. So,

the exponential coupling maximises the possibility of overcharging the BH and, in this sense, maximises

the differences with the RN BH case. Moreover, as seen before (cf. Fig. 2.2), scalarization is ”stronger”

for the fE coupling than for fP (with an intermediate value for fC). We also remark that for a given

α, as q increases, so does the scalar field’s initial amplitude φ0 . As already mentioned, the scalar field
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profile is always such that the scalar field is monotonically decreasing. Thus, the global maximum of the

scalar field occurs at the BH horizon and, for fixed α, it increases with q, meaning one can take φ0 as a

measure of q and vice-versa.
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Figure 2.5: Characteristic quantities at the horizon for fE and α = −10. Left panel: Horizon area AH .
Right panel: Kretschmann scalar at the horizon K(rH). One can observe a divergence of K(rH), and
that AH vanishes at the critical line.

The domain of existence of the fF coupling function (Fig. 2.4 - right panel) can be divided into

two parts. For α = constant, φ0 grows (with q) from the existence line until it reaches φ2
0 = 1/|α| at

the divergence line, corresponding to the pole of the coupling. These solutions span the physical region

wherein solutions have a positive energy density. Beyond the divergence line solutions have φ2
0 > 1/|α|,

resulting in a negative energy density region near the horizon which extends up to a certain radius at

which ρ = 0, and after that point ρ > 0 - see Fig. 2.3. Beyond this the divergence line the solutions are

not physical (”exotic”). Solutions in the exotic region appear to be smooth exhibiting no other obvious

pathologies apart from the negative energy density. The physical region of the domain of existence will

tend to thin down to zero, as |α| increases. Unlike the other studied couplings, for a model with fF , the

scalarized BH can only be overcharged and in the physical region if the coupling constant is in a compact

interval: −α ∈ [1/4, 1.89074], with a maximum of q = 1.02971 for α = −1.0115 - cf. Fig. 2.4 - right

panel.

2.5.3 Perturbative stability

Following a standard technique for studying perturbative stability against radial perturbations [1], we

consider spherically symmetric, linear perturbations of our equilibrium solutions, keeping the metric

ansatz (2.3), but allowing the functions N , δ, φ, V to depend on t as well as on r:

ds2 = −Ñ(r, t)e−2δ̃(r,t)dt2 +
dr2

Ñ(r, t)
+ r2(dθ2 + sin2 θdϕ2) , A = Ṽ (r, t)dt , φ = φ̃(r, t) . (2.40)

The time dependence enters as a periodic perturbation with frequency Ω, for each of these functions:

Ñ(r, t) = N(r) + εN1(r)e−iΩt , δ̃(r, t) = δ(r) + εδ1(r)e−iΩt , (2.41)

φ̃(r, t) = φ(r) + εφ1(r)e−iΩt , Ṽ (r, t) = V (r) + εV1(r)e−iΩt .

23



From the linearised field equations around the background solution, the metric perturbations and V1(r)

can be expressed in terms of the scalar field perturbation,

N1 = −2rNφ′φ1 , δ′1 = −2rφ′φ′1 , V ′1 = −

(
δ1 +

ḟi(φ)

fi(φ)
φ1

)
V ′ , (2.42)

thus yielding a single perturbation equation for φ1. Introducing a new variable Ψ(r) = rφ1, the scalar-field

equation of motion 2.27 may be written as

(
Ne−δ

)2
Ψ′′ +Ne−δ

(
Ne−δ

)′
Ψ′ +

(
Ω2 − UΩ

)
Ψ = 0, (2.43)

which, by introducing the ’tortoise’ coordinate x [56] as

dx

dr
=

1

e−δN
, (2.44)

can be written in the the standard Schrödinger-like form:

− d2

dx2
Ψ + UΩΨ = Ω2Ψ . (2.45)

The perturbation potential UΩ is defined as:

UΩ =
e−2δN

r2

1−N − 2r2φ′2 − Q2

r2f(φ)

1− 2r2φ′2 +
f̈(φ)

2f(φ)
+ 2rφ′

ḟ(φ)

f(φ)
−

(
ḟ(φ)

f(φ)

)2
 (2.46)

The potential UΩ is not positive definite, but is regular in the entire range −∞ < x < ∞. Also, it

vanishes at the BH event horizon and at infinity. It follows from a standard result in quantum mechanics

(see e.g. [57]) that eq. (2.45) has no bound states if UΩ is everywhere larger than the lowest of its two

asymptotic values, i.e., if it is positive. 2

For all couplings analysed, for solutions with a q close to the RN BH, the potential has a region where

it is negative. However for the case of the exponential, cosh and power-law coupling, for larger q, the

potential is, generically, everywhere positive for the vast majority of the solutions analysed, which are

therefore free of instabilities - see the related analysis in [38, 43] and as an illustration, in Fig. 2.6 the

potential is plotted for a sequence of solutions for the exponential coupling (left). One can see that the

potential is smaller than zero in a small q-region close to the RN limit – the RN BH has the zero mode

at q = 0.649 (α = −10). Then the potential becomes positive and remains so for arbitrary large q along

the remaining α branch. For the fractional coupling, on the other hand, there can be negative regions in

2A simple proof is as follows. Write Eq. (2.45) in the equivalent form

d

dx

(
Ψ
dΨ

dx

)
=

(
dΨ

dx

)2

+ (UΩ − Ω2)Ψ2 . (2.47)

After integrating from the horizon to infinity it follows that∫ ∞
−∞

dx

[(
dΨ

dx

)2

+ UΩΨ2

]
= Ω2

∫ ∞
−∞

dxΨ2 (2.48)

which for UΩ > 0 implies Ω2 > 0.
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Figure 2.6: Perturbative potential, UΩ, for a sequence of solutions. Left panel: exponential coupling,
α = −10 and Q = 0.12. The solutions have rH = 0.324 (q = 0.651) – lowest curve – up to rH = 0.297
(q = 0.695) – top curve. Right panel: fractional coupling. The sequence is plotted for the same sequence
of q values. The inset plot in black corresponds to the smallest value of q considered. One observes that
after a determined value of q the potential diverges at some range of the radial coordinate r for which
φ(r) = 1/

√
|α|, and has both negative and positive regions.

the potential both for physical and exotic solutions (c.f. right panel Fig. 2.6). As discussed in [43], the

n > 1 solutions are not stable, and the negative potential region (see Fig. 2.7) does, in fact, correspond

to an instability, which is not true for the n = 0 solutions. We emphasise that the existence of a negative

potential region is a necessary, but not sufficient, condition for instability.
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Figure 2.7: Perturbative potential, UΩ, for the exponential coupling for several values of α and n. One
observes that the overtone solutions have a region where UΩ < 0.
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2.5.4 Entropic preference

In the EMS model, the Bekenstein-Hawking BH entropy formula holds. Thus, the entropy analysis

reduces to the analysis of the horizon area. It is convenient to use the already introduced reduced event

horizon area aH . Then, in the region where the RN BH and scalarized BHs co-exist – the non-uniqueness

region – and for the same q, the scalarized solutions are always entropically preferred. This is shown

in Fig. 2.8 for all four coupling functions studied herein. One also observes that, for the same q, aH

increases with the growth of |α|. For the same power-law coupling here considered, eSTGB BHs are

not entropically favoured and the scalarized spherically symmetric, fundamental BH solutions are not

necessarily perturbatively stable, which creates a difference between the two models [55]. Such entropic

considerations are not, however, sufficient to establish if the endpoint of the instability of the RN BH

is the corresponding hairy BH with the same q. In [38], fully non-linear dynamical evolutions were

performed that established that for fE , and sufficiently small q, this is indeed the case. The endpoint of

the instability, however, can only be established once fully non-linear numerical evolutions are studied.

Such evolutions, whose details are beyond the scope of this work, are addressed in Appendix A.
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Figure 2.8: Reduced area aH vs. q for: (top, left panel) fE (φ); (top, right panel) fC (φ); (bottom left
panel) fP (φ); (bottom right panel) fF (φ). The blue lines are the sequence of non-scalarized RN BHs.
The red lines are sequences of (numerical data points representing) scalarized BHs for a given α. Different
sequences are presented, for a range of values of α. The solid black line shows the sequence of solutions
along the boundary of the physical region for the fF model. Source: [1].
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Chapter 3

Spontaneous scalarization of dyonic

black holes

There is an asymmetry between the electric and magnetic fields, visible in Maxwell’s equations. Maxwell

himself pointed out that it would be necessary to assert that there are no magnetically charged bodies and

no magnetic currents, i.e., magnetic monopoles [58]. If one were to assume the existence of a magnetic

charge density ρm and a magnetic current density jm the Maxwell equations would be written [59]

∇ ·E = 4πρe,

∇ ·B = 4πρm,

∇×E = − 1
c

(
4πjm + ∂B

∂t

)
,

∇×B = 1
c

(
4πje + ∂E

∂t

)
,

(3.1)

which are symmetric under the transformation

E→ B, ρe → ρm, je → jm,

B→ −E, ρm → −ρe, jm → −je.
(3.2)

Dyons, first proposed by Julian Schwinger in 1969 [60], are hypothetical particles with both an electric

and a magnetic charge. A dyon with a zero electric charge is usually referred to as a magnetic monopole.

The addition of a magnetic charge to a BH gives rise to a class of systems dubbed dyonic BHs. An example

includes the 3-parameter electro-vacuum dyonic RN BH (which is a particular limit of the Kerr-Newman

metric)

ds2 = −
(

1− 2M

r
+
Q2 + P 2

r2

)
dt2 +

dr2(
1− 2M

r + Q2+P 2

r2

) + r2dΩ2,

that describes BH with both electric charge Q and magnetic charge P . For a given M , these BHs can only

sustain charges if M ≥
√
Q2 + P 2. When the equality holds, the extremality limit is attained, yielding

extremal BHs. These extremal solutions are non-singular spacetimes on and outside a degenerate and

smooth event horizon that, amongst other properties [10]: i) has a vanishing Hawking temperature, ii)
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has a near-horizon geometry given by the Robinson-Bertotti metric, which is a kind of Kaluza-Klein

vacuum in which two directions are compactified and the effective spacetime is the two-dimensional AdS

spacetime of negative curvature, iii) allows a multi-BH generalisation. Until now, in this work, only

purely electric BHs have been considered.

A class of well studied BHs in the EMS model are dubbed dilatonic. The coupling function of the

dilatonic class prevents EM theory to be a consistent truncation of this class of EM-dilaton models. In

particular, the RN solution of EM theory does not solve these EM-dilaton models. Instead, new charged

BHs with a non-trivial scalar field profile exist [61, 62], which are known in closed analytic form and

that present RN-unlike features. As an example, the charge to mass ratio can exceed unity and there are

no extremal BHs for purely electric (or magnetic) solutions. However, the introduction of an additional

magnetic charge leads to dyonic BHs with an extremal limit, which have been constructed for specific

couplings (see e.g [63]).

As seen in chapter 2, purely electrical EMS spontaneously scalarized BHs possess no extremal limits,

but critical limits (with singular solutions) instead. Given the importance of extremal solutions, it is

interesting to inquire which are the properties of the family of dyonic spontaneously scalarized BHs and,

in particular, of their extremal limit, in case it exists (as suggested by the dilatonic case). The next

natural generalisation of EMS models, and the aim of the present chapter, is then to include a magnetic

charge and observe what new features arise. All the notations from the last chapter are adopted here.

This chapter will be based on the work done in ref. [47].

3.1 The EMS model for dyonic BHs

We start by considering once again the EMS action

S =

∫
d4x
√
−g
(
R− 2∂µφ∂

µφ− f(φ)FµνF
µν
)
, (3.3)

in the previously presented metric ansatz

ds2 = −N(r)e−2δ(r)dt2 +
dr2

N(r)
+ r2

(
dθ2 + sin2 θdϕ2

)
, (3.4)

with N(r) = 1− 2m(r)/r . To include a magnetic charge in the model, however, we consider the gauge

4-potential (compatible with the symmetries of eq. 3.4) given by

A = V (r)dt− P cos θdϕ, (3.5)

with P the magnetic charge. Integrating the trivial angular dependence allows to define an effective

lagrangian

Leff = −e
−δP 2f(φ)

2r2
+

1

2
eδr2f(φ)V ′2 +

1

2
e−δ

(
1−N − rN ′ − r2Nφ′2

)
, (3.6)
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from which the equations of motion can be derived. Noticing the existence of a first integral

V ′ = − Q

r2f(φ)
e−δ, (3.7)

with Q the electric charge, the equations of motion are

δ′ = −rφ′2, (3.8)

(
e−δr2Nφ′

)′
= −1

2
eδr2ḟ(φ)V ′2 +

e−δP 2ḟ(φ)

2r2
, (3.9)

N ′ = −
Q2 + P 2f(φ)2 + f(φ)r2

(
r2Nφ′2 +N − 1

)
f(φ)r3

. (3.10)

To solve the equations of motion we have to implement suitable boundary conditions for the desired

functions and corresponding derivatives. We assume the existence of an event horizon in r = rH > 0 and

that the solution possesses a power series expansion in (r − rH)

N(r) = N1 (r − rH) + . . . , δ(r) = δ0 + δ1 (r − rH) + . . . ,

φ(r) = φ0 + φ1 (r − rH) + . . . , V (r) = v1 (r − rH) + . . . ,
(3.11)

with the lower order coefficients being

N1 = −Q
2 + P 2f(φ0)2 − r2

Hf(φ0)

r3
Hf(φ0)

, δ1 = −φ2
1 rH , v1 = − Q

r2
Hf(φ0)

e−δ0 ,

φ1 =
ḟ(φ0)

(
Q2 − P 2f(φ0)2

)
2rHf(φ0) [Q2 − r2

Hf(φ0) + P 2f(φ0)2]
,

(3.12)

which are fully determined via the two essential parameters φ0 and δ0. Also, of interest at the horizon

we have the Hawking temperature TH , horizon area AH , the energy density ρ(rH) and the Kretschmann

scalar K(rH) given respectively by

TH =
1

4π
N1e

−δ0 , AH = 4πr2
H , ρ(rH) =

2
(
P 2f(φ0)2 +Q2

)
r4
Hf(φ0)

,

K(rH) =
12

r4
H

{
1− 2

r2
H

[
Q2

f(φ)
+ f(φ)P 2

]
+

5

3r4
H

[
Q2

f(φ)
+ f(φ)P 2

]2
}
.

(3.13)

An asymptotic approximation of the solution in the far field takes the form

N(r) = 1−2M

r
+
Q2 + P 2 +Q2

s

r2
+. . . , φ(r) =

Qs
r

+. . . , δ(r) =
Q2
s

2r2
+. . . , V (r) = Φe+

Q

r
+. . . ,

(3.14)

with Qs the scalar charge, Φe the electrostatic potential difference between the EH and infinity and M

the ADM mass. The following results and reduced quantities will be useful later

FµνF
µν =

2
[
P 2f(φ)2 −Q2

]
r4f(φ)2

, (3.15)
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q =

√
Q2 + P 2

M
, aH =

AH
16πM2

, tH = 8πMTH (3.16)

q is defined as the reduced dyonic charge, aH is the reduced event horizon area and tH the reduced

horizon temperature.

3.1.1 Physical relations and perturbative stability

Following a similar procedure as in the last chapter, a Virial relation and a Smarr law are derived for the

EMS model in the presence of a magnetic charge. This relations will later be used as tests to the code

used to obtain the solutions.

3.1.1.1 Smarr law

The integral mass formula and energy-momentum tensor presented in Chapter 2 hold in this generalisa-

tion, taking into account the new form of FµνF
µν . One can then arrive at a Smarr law given by

M =
1

2
THAH + ΦeQ+ ΦmP, (3.17)

with

Φe =

∫ ∞
rH

dr

(
Q

r2f(φ)
e−δ
)
≡ −

∫ ∞
rH

drV ′, Φm =

∫ ∞
rH

dr

(
e−δf(φ)

P

r2

)
≡ −

∫ ∞
rH

drV ′m, (3.18)

the electrostatic and magnetostatic potential differences respectively. A non-linear Smarr relation can

also be established for this family of models

M2 +Q2
s =

1

4
A2
HT

2
H +Q2 + P 2. (3.19)

3.1.1.2 Virial relation

Similarly to what was done in Chapter 2, consider the effective action

Seff =

∫ ∞
rH

drLeff , (3.20)

and assume that hairy BH solutions exist such that they are described by the functions φ(r), δ(r), V (r), N(r)

with suitable boundary conditions at the event horizon and at infinity. Next consider the 1-parameter

family of configurations described by the scaled functions

Fλ(r) ≡ F (rH + λ(r − rH)), (3.21)

with F ∈ {φ, δ, V,N}. If the initial configuration was indeed a solution, then there must be a critical

point at λ = 1 such that the effective action is extremized:

(
dSλeff
dλ

)
λ=1

= 0. It is then straightforward
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to obtain a Virial relation given by

∫ ∞
rH

dr
{
e−δr2φ′

2
[
1− rH

r
(1 +N)

]}
= ΦeQ+ ΦmP +

∫ ∞
rH

dr

{
2rH
r

[V ′Q+ V ′mP ]

}
. (3.22)

One can show that the left hand side integrand is strictly positive. Thus, the virial identity shows

that a nontrivial scalar field requires a nonzero electric/magnetic charge so that the right hand side is

nonzero.

3.1.2 Perturbative stability

Following a procedure similar to the one done in Chapter 2 for studying perturbative stability against

radial perturbations, we consider spherically symmetric, linear perturbations of our equilibrium solutions,

keeping the metric ansatz, but allowing the functions N , δ and φ, V to depend on t as well as on r:

ds2 = −Ñ(r, t)e−2δ̃(r,t)dt2+
dr2

Ñ(r, t)
+r2(dθ2+sin2 θdϕ2) , A = Ṽ (r, t)dt−P cos θdϕ2 , φ = φ̃(r, t) .

(3.23)

The time dependence enters as a periodic perturbation with frequency Ω, for each of these functions:

Ñ(r, t) = N(r) + εN1(r)e−iΩt , δ̃(r, t) = δ(r) + εδ1(r)e−iΩt , (3.24)

φ̃(r, t) = φ(r) + εφ1(r)e−iΩt , Ṽ (r, t) = V (r) + εV1(r)e−iΩt .

From the linearised field equations around the background solution, the metric perturbations and V1(r)

can be expressed in terms of the scalar field perturbation,

N1 = −2rNφ′φ1 , δ′1 = −2rφ′φ′1 , V ′1 = −V ′
(
δ1 +

ḟ(φ)

f(φ)
φ1

)
, (3.25)

thus yielding a single perturbation equation for φ1. Introducing a new variable Ψ(r) = rφ1, the scalar-field

equation of motion may be written as

(
Ne−δ

)2
Ψ′′ +Ne−δ

(
Ne−δ

)′
Ψ′ +

(
Ω2 − UΩ

)
Ψ = 0, (3.26)

which, by introducing the ’tortoise’ coordinate x [56] as

dx

dr
=

1

e−δN
, (3.27)

can be written in the the standard Schrödinger-like form:

− d2

dx2
Ψ + UΩΨ = Ω2Ψ . (3.28)

The perturbation potential UΩ is defined as:

UΩ = U0 + P 2U2, (3.29)
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with

U0 =
e−2δN

r2

{
1−N − 2r2φ′2 − Q2

r2f(φ)

(
1− 2r2φ′2 +

f̈(φ)

2f(φ)
+ 2rφ′

ḟ(φ)

f(φ)
− ḟ(φ)2

f(φ)2

)}
,

U2 =
e−2δN

r4

{
f̈(φ)

2
+ 2rφ′ḟ(φ)− f(φ)

(
1− 2r2φ′2

)}
.

(3.30)

3.2 The coupling functions, spontaneous scalarization and the

existence line

Two classes of coupling functions will be considered, one for which spontaneous scalarization does not

occur – dilatonic –, and one for which it does – spontaneously scalarized (or simply, scalarized).

3.2.1 Dilatonic class

The dilatonic class is characterised by a set of field equations that do not allow a scalar-free solution (i.e.

the RN BH). Hence, from the scalar field equation of motion ḟ(0) 6= 0. A well motivated coupling of such

type is the standard dilationic coupling

f(φ) = e2αφ, (3.31)

in which case we refer to φ as the dilaton field. This coupling appears naturally in Kaluza-Klein models

and supergravity/low-energy string theory models. Three reference values for the coupling constant α

are

α = 0 (EM theory) α = 1 (low-energy strings) α =
√

3 (KK theory). (3.32)

For this type of coupling some exact BH solutions are known (see e.g. [47]).

3.2.2 Spontaneously scalarized class

The scalarized class was already discussed in the last chapter, and we shall here adopt the same expo-

nential coupling as before (that is in some way, a natural generalisation of the dilationic model for a

spontaneous scalarization model)

f(φ) = e2αφ2

. (3.33)

where α > 0 is the coupling constant. The previous coupling function was extensively studied in the

last chapter for the purely electrical case. Here we shall dissect it in detail in the presence of a magnetic

charge.

3.2.3 The existence line

For the scalarized class there will be a set of bifurcating solutions from the RN BH. This set of bifurcating

solutions form the existence line. By linearising the scalar field equation of motion and performing a
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spherical harmonic decomposition one can arrive at

eδ

r2

(
r2N

eδ
U ′`

)′
−
[
`(`+ 1)

r2
+ µ2

eff

]
U` = 0 , (3.34)

with µ2
eff = α(P 2 − Q2)/r4 < 0. One can observe that for spontaneously scalarized solutions, with a

positive coupling constant, |Q| > |P |. In the spherically symmetric case (` = 0), eq. 3.34 possesses and

exact solution given by

U(r) = LPu

(
1 +

2
(
Q2 − P 2

)
(r − rH)

r (r2
H + P 2 −Q2)

)
, where u =

1

2

(√
1− 8α− 1

)
, (3.35)

where LPu is a Legendre function. U(r) approaches a constant non-zero value U∞ as r →∞

U(r)→ U∞ = 2F1

[
1−
√

1− 8α

2
,

1 +
√

1− 8α

2
, 1;

q2(1−Q2)

2(q2 − (1 +
√

1− q2)(1 +Q2))

]
+O

(
1

r

)
, (3.36)

with Q = P/Q. Thus finding the ` = 0 unstable mode of a RN BH with a given Q reduces to studying

the zeros of the hypergeometric function 2F1, so that U∞ = 0. The set of bifurcating points from the RN

BH form the existence line, that can be seen in Fig. 3.1 for several values of P/Q. As one can observe,

higher values of P/Q lead to a higher qmin for scalarization to occur.
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Figure 3.1: Existence line for several values of P/Q.

3.3 Results

3.3.1 The purely electric BHs

Before jumping into the dyonic case, a study of the purely electrical BHs will be done. Such study was

already done for the scalarized case in Chapter 2, contrarily to the dilatonic one, that will now be studied.

The behaviour of the dilatonic BHs with any α > 0 is rather similar, albeit α = 1 is a somewhat special

point that separates the family into two subsets with respect to the behaviour of some physical quantities.

This can be seen from the study of the exact solutions in Appendix B. For any given α, the branch of

dilatonic BHs bifurcates from the Schwarzschild BH (q = 0), rather than RN BHs, and ends in a critical
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solution which is approached for a certain maximal q

q(D)
max =

√
1 + α2 , (3.37)

where the superscript ‘D’ refers to dilatonic. The critical solution has, for any α > 0, a singular horizon,

as one can see by evaluating the Kretschmann scalar at the horizon. The reduced temperature tH , on

the other hand, goes to zero for α < 1 and diverges for α > 1. The solutions with α = 1 have tH = 1.

These features can be seen in Fig. 3.2 (left panels), where the behaviour of aH , tH vs. q are illustrated

for several values of α. Illustrative radial profiles of the solutions can be seen in Fig. 3.3.
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Figure 3.2: Reduced area aH (top panels) and reduced temperature tH (bottom panels) vs. reduced
charge q for dilatonic (left panels) and scalarized solutions (right panels). All solutions have P = 0. The
blue lines are the set of RN BHs (φ = 0). The red lines are sequences of BHs with a nontrivial scalar
field for a given α. Different sequences are presented, for a range of values of α. The black dots indicate
the RN solutions from which the scalarized BHs bifurcate. Source: [47].

In what concerns perturbative stability, the results for the scalarized case can be seen in Chapter 2,

Section 2.5.3. For the dilatonic case, an illustrative plot for the perturbative potential UΩ is found in

Fig. 3.4. The potential is positive definite and regular in the entire range −∞ < x < ∞. Also, the

potential vanishes at the BH event horizon and at infinity. It follows that, as previously discussed, the

BH solutions are perturbatively stable.
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Figure 3.3: Illustrative radial profiles for the dilatonic and scalarized models for Q = 0.12, rH = 0.2676,
α = 5. Left panel: Dilatonic radial profiles. Right panel: Scalarized radial profiles.
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bottom curve has q = 0.687, while the top one has q = 0.735. The perturbative potentials are always
positive definite.

3.3.2 Dyonic BHs

Here we address the generalisation of the EMS model with a non-zero magnetic charge. The profile

functions of illustrative dyonic BHs are shown in Fig. 3.5, for both the dilatonic and scalarized cases.

Dyonic BHs preserve some, but not all, of the qualitative characteristics of the purely electric solutions.

In the dilatonic case, the branch of solutions with a given α starts again from the Schwarzschild limiting

solution (which has aH = 1, tH = 1 and q = 0) and ends in a limiting configuration with aH > 0, tH = 0

and q = qmax > 0 - Fig. 3.6 (left panels). This limiting solution, however, is now an extremal BH (rather

than a singular critical solution) as will be discussed next. Unlike the dilatonic solutions, which exist for

arbitrarily small q for any α, scalarized BHs with a given α exist for q > qmin only. They bifurcate from

a RN BH (with q > 0) and form a branch ending again on an extremal solution with vanishing horizon

temperature and nonzero horizon area - Fig. 3.6 (right panels). As in the case of purely electric solutions,

for the same global quantities M,P,Q, the dyonic scalarized solutions are always entropically preferred

over the corresponding RN solution.

Dilatonic dyon BHs were found to be perturbatively stable, similarly to the purely electric situation,

yielding a perturbative potential that is everywhere regular and positive, for all values of P/Q and q – c.f.
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Figure 3.5: Illustrative radial profiles for the dilatonic and scalarized models for Q = 0.12, α = 5 and
several values of P . Top left panel: dilatonic radial profiles for P/Q = 0.1 and rH = 0.565. Top right
panel: dilatonic radial profiles for P/Q = 0.25 and rH = 0.565. Bottom left panel: scalarized radial
profiles for P/Q = 0.1 and rH = 0.297. Bottom right panel: scalarized radial profiles for P/Q = 0.25
and rH = 0.297.

Fig. 3.7 (left panel). On the other hand, as expected, the scalarized dyon BHs (right panel of Fig. 3.7)

have a negative potential region (which does not imply instability) for solutions close to the bifurcating

points (this is, for small values of q, near the existence line for a certain P/Q ratio).

3.3.2.1 Extremal solutions and the domain of existence

To address extremal BHs one needs to impose a different near-horizon expansion which accounts for the

degenerate horizon [64, 65]. The leading order terms of the appropriate expansion are:

N(r) = N2(r − rH)2 + . . . , φ(r) = φ0 + φc(r − rH)k + . . . ,

δ(r) = δ0 + δ1(r − rH)2k−1 + . . . , V (r) = v1(r − rH) + . . . . (3.38)

It is convenient to take rH and φ0 as essential parameters. Then the field equations imply

Q =
rH
√
f (φ0)√
2

, P =
rH√

2f (φ0)
, N2 =

1

r2
H

. (3.39)
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Given a coupling function f(φ), one can express the value of the scalar field at the horizon φ0 as a function

of P,Q, by solving the equation f(φ0) = Q
P while rH =

√
2PQ. The expansion 3.38 contains two free

parameters φc and δ0, fixed by the numerics, while

δ1 = −rHφ
2
ck

2

2k − 1
, v1 =

e−δ0Q

r2
Hf (φ0)

, k =
1

2

−1 +

√√√√1 + 2

(
ḟ (φ0)

f (φ0)

)2
 > 0. (3.40)
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A non-integer k would imply that the derivative of all functions will diverge at some order as r → rH .

Although everything is smooth to 2nd order (in particular, the Kretschmann and Ricci scalars should be

finite everywhere), the (suitable order) derivatives of the Riemann tensor would diverge at the horizon,

resulting in non-physical solutions. Thus, in order to obtain physical solutions, we arrive at the condition

ḟ(φ0)

f(φ0)
= ±

√
2p(p+ 1), p ∈ N, (3.41)

which yields for the dilatonic coupling the triangular sequence [64, 65]

α =

√
p(p+ 1)

2
. (3.42)

Note that the first two terms of the sequence are α = 1 and α =
√

3. For the exponential coupling, we

have

α =
p(p+ 1)

4 log
(
Q
P

) =
1

2φ0

√
p(p+ 1)

2
. (3.43)

The extremal solutions share the far field asymptotics with the non-extremal ones. Extremal BH solutions

are constructed using a similar numerical procedure as in the generic non-extremal case through a shooting

method, and as a test, we compare the maximum allowed q that was obtained for α = 1 with the analytical

result q
(D)
ext (α = 1) =

√
2(1+Q2)

1+Q for the dilatonic case (c.f. Appendix B), with Q = P/Q. The domain

of existence of the dyonic BHs is shown in Fig. 3.8 for several values of the ratio P/Q and for both

dilatonic and scalarized BHs. In particular, in both cases and for fixed α, the maximum allowed value for

q decreases as the ratio P/Q increases. In other words, the domain of existence shrinks, as the magnetic

charge is increased, for fixed Q, i.e. a stronger presence of a magnetic charge leads to smaller maximum

allowed values of q. For purely electrical solutions the domain of existence is, as before, bounded by a

critical line, and in the scalarized case, by an existence line as well.
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Chapter 4

Spontaneous scalarization of charged

black holes from axion-like coupling

and study of black holes with

axion-hair

In order to solve the strong CP problem, Peccei and Quinn introduced a pseudoscalar known as the axion

[66] (see also [67–69]). It was later understood that besides offering a solution to the strong CP problem,

the axion could have deep implications in cosmology, being a strong candidate for both cold and non-cold

dark matter [70–73]. Also, ultralight axion fields arise naturally from compactifications in string theory

[74, 75]. A series of experiments are being proposed and conducted in a quest to look for axionic imprints

(see e.g. [76] for a quick review and [77, 78] for a more detailed read). Assuming the existence of the

axion φ, the Maxwell equations must change, forming (together with the scalar field equation of motion)

the axion electrodynamics [79]



∇ · (E− αφB) = 4πρe,

∇ · (B + αφE) = 4πρm,

∇× (E− αφB) = − 1
c

[
4πjm + ∂

∂t (B + αφE)
]
,

∇× (B + αφE) = 1
c

[
4πje + ∂

∂t (E− αφB)
]
,

(4.1)

which are symmetric under the transformation

E− αφB→ B + αφE, ρe → ρm, je → jm,

B + αφE→ −(E− αφB), ρm → −ρe, jm → −je.
(4.2)

BHs with axion hair have been extensively studied in the literature [80–85]. In a phenomenon as-

sociated with BH superradiance, axions can grow and ”condensate” in the ergo-region of massive and
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spinning BHs, causing instabilities [86, 87]. Such instabilities extract rotational energy from the BH and

transfer it into the axionic cloud, leading to distinct gravitational wave imprints [88–90], that can be

detected with current detectors [91, 92]. Such accumulation of ultralight bosonic particles may also lead

to distinct BH shadows which can be probed via the Event Horizon Telescope [93].

In this chapter, we generalise the EMS models to include a non-minimal coupling of a scalar field to

a Lorentz Chern-Simons term Fµν F̃
µν (that we call ”axion-like coupling”), and study the (spontaneous)

scalarization related phenomena. All the notations from the last chapters are used here. In this Chapter

we shall follow [2].

4.1 The model

The model in study is a generalisation of the EMS models and describes a real scalar field φ minimally

coupled to Einstein’s gravity, non-minimally coupled to Maxwell’s electromagnetism and to a Lorentz

Chern-Simons term. It can be described via the action

S =

∫
d4x
√
−g
[
R− 2∂µφ∂

µφ− f(φ)FµνF
µν − h(φ)Fµν F̃

µν
]
, (4.3)

where Fµν is the usual Maxwell tensor, and F̃µν = 1
2
√
−g ε

µνρσFρσ its dual. The functions f(φ) and

h(φ) are responsible for the non-minimal couplings between the scalar field and the source terms. Cases

for which h(φ) = 0 were extensively studied in the last chapters, and we shall focus on the new cases

for which h(φ) 6= 0. A generic, spherically symmetric line element to describe both the scalar free and

scalarized solutions is (as before)

ds2 = −N(r)e−2δ(r)dt2 +
dr2

N(r)
+ r2

(
dθ2 + sin2 θdϕ2

)
, (4.4)

where N(r) is related to the Misner-Sharp mass function m(r) via N(r) = 1− 2m(r)
r . Spherical symmetry

and the presence of a magnetic charge impose a 4-potential

A = V (r)dt− P cos θdϕ, (4.5)

with P the magnetic charge, and a solely radial dependent scalar field φ(r). Integrating the trivial angular

dependence, one can obtain an effective Lagrangian from which the equations of motion may be derived,

given by

Leff = −e
−δP 2f(φ)

2r2
+ Ph(φ)V ′ +

1

2
eδr2f(φ)V ′2 +

1

2
e−δ

(
1−N − rN ′ − r2Nφ′2

)
. (4.6)

The functions N, δ, V, φ are solely radial dependent, hence for simplicity this dependence shall be omitted.

The prime denotes a radial derivative. Noticing the existence of a first integral

V ′ = −Q+ Ph(φ)

r2f(φ)
e−δ, (4.7)
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with Q the electric charge, the equations of motion are

δ′ = −rφ′2, (4.8)

(
e−δr2Nφ′

)′
= −1

2
eδr2ḟ(φ)V ′2 − Pḣ(φ)V ′ +

e−δP 2ḟ(φ)

2r2
, (4.9)

N ′ = −
(Q+ Ph(φ))2 + P 2f(φ)2 + f(φ)r2

(
r2Nφ′2 +N − 1

)
f(φ)r3

. (4.10)

To solve the set of ODEs we have to implement suitable boundary conditions for the desired functions

and corresponding derivatives. We assume the existence of an event horizon in r = rH > 0 and that the

solution possesses a power series expansion in (r − rH)

N(r) = N1 (r − rH) + . . . , δ(r) = δ0 + δ1 (r − rH) + . . . ,

φ(r) = φ0 + φ1 (r − rH) + . . . , V (r) = v1 (r − rH) + . . . ,
(4.11)

with the lower order coefficients being

N1 = − (Q+ Ph(φ0))2 + P 2f(φ0)2 − r2
Hf(φ0)

r3
Hf(φ0)

, δ1 = −φ2
1 rH , v1 = −Q+ Ph(φ0)

r2
Hf(φ0)

e−δ0 ,

φ1 = −
2P [Q+ Ph(φ0)] f(φ0)ḣ(φ0) + ḟ(φ0)

(
P 2f(φ0)2 − (Q+ Ph(φ0))

2
)

2rHf(φ0)
[
(Q+ Ph(φ0))

2 − r2
Hf(φ0) + P 2f(φ0)2

] ,

(4.12)

which are fully determined via the two essential parameters φ0 and δ0. Also, of interest at the horizon

we have the Hawking temperature TH , horizon area AH , the energy density ρ(rH) and the Kretschmann

scalar K(rH) given respectively by

TH =
1

4π
N1e

−δ0 , AH = 4πr2
H , ρ(rH) =

2
(
P 2f(φ0)2 + (Q+ Ph(φ0))2

)
r4
Hf(φ0)

,

K(rH) =
4

r8
Hf(φ0)2

{
5[Q+ Ph(φ0)]4 − 6r2

H [Q+ Ph(φ0)]2f(φ0)− 6P 2r2
Hf(φ0)3 + 5P 4f(φ0)4

+f(φ0)2
(
10P 2Q2 + 3r4

H + 10P 3h(φ0)[2Q+ Ph(φ0)]
)}

.

(4.13)

An asymptotic approximation of the solution in the far field takes the form

N(r) = 1−2M

r
+
Q2 + P 2 +Q2

s

r2
+. . . , φ(r) =

Qs
r

+. . . , δ(r) =
Q2
s

2r2
+. . . , V (r) = Φe+

Q

r
+. . . ,

(4.14)

with Qs the scalar charge, Φe the electrostatic potential difference between the EH and infinity and M

the ADM mass. The following results and definitions for our model will be useful later

FµνF
µν =

2
[
P 2f(φ)2 − (Q+ Ph(φ))2

]
r4f(φ)2

, Fµν F̃
µν =

4P (Q+ Ph(φ))

r4f(φ)
, (4.15)

q =

√
Q2 + P 2

M
, aH =

AH
16πM2

, tH = 8πMTH , (4.16)
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where q is defined as the reduced dyonic charge, aH the reduced event horizon area and tH the reduced

event horizon temperature.

4.2 Conditions for the occurrence of spontaneous scalarization

As discussed in the previous chapters, in order for spontaneous scalarization to occur in a model, the

coupling functions (and respective derivatives) must satisfy a set of conditions. These conditions emerge

as a consequence of i) the far field equations of motion; ii) allowing the existence of a scalar free solution;

iii) imposing a tachyonic instability in the system.

1. Maxwell’s theory must be recovered near infinity, hence, for an asymptotically vanishing scalar field

profile

f(0) = 1. (4.17)

There is no condition imposed on the coupling function h(φ) (this is not true for its derivatives),

since the term Fµν F̃
µν is a topological invariant.

2. The system must accommodate a scalar free solution. The Klein-Gordon equation of motion is

�φ =
ḟ(φ)FµνF

µν + ḣ(φ)Fµν F̃
µν

4
, (4.18)

from which, in order for a non-scalarized solution to exist, follows that

ḟ(0) = 0 , ḣ(0) = 0 (4.19)

3. Spontaneous scalarization occurs if the system is unstable against scalar perturbations δφ. These

obey (neglecting second order terms)

(�− µ2
eff )δφ = 0, (4.20)

with µ2
eff < 0 given by

µ2
eff =

f̈(0)FµνF
µν |φ=0 + ḧ(0)Fµν F̃

µν |φ=0

4
=
f̈(0)(P 2 − (Q+ Ph(0))2) + 2ḧ(0)P (Q+ Ph(0))

2r4
, (4.21)

from which the second derivatives of the coupling functions are constrained in a way that cannot

be determined a priori.
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4.3 Bifurcating points from the scalar free solution - The exis-

tence line

Following a similar procedure as in the last chapters, the spherical symmetry allows a spherical harmonic

decomposition of the scalar field to be performed

δφ =
∑
`,m

Y`,m(θ, ϕ)U`(r), (4.22)

from which the scalar field equation of motion 4.18 simplifies to

eδ

r2

(
r2N

eδ
U ′`

)′
−
[
`(`+ 1)

r2
+ µ2

eff

]
U` = 0, (4.23)

which is an eigenvalue problem: fixing the strength of the coupling (i.e. fixing the coupling constant

on which the coupling function depends), for a given `, requiring an asymptotically vanishing, smooth

scalar field, a discrete set of BHs solutions are selected, i.e. RN solutions with a certain reduced charge.

These are the bifurcation points from the scalar free solution. They are labelled by an integer n ∈ N0;

n = 0 is the fundamental mode, whereas n > 1 are excited states (overtones). Setting δ = 0 and

N(r) = 1− 2M
r + Q2+P 2

r2 allows us to recover the dyonic RN metric. Then, a scalarized solution can be

dynamically induced by a scalar perturbation of the background, as long as the scalar-free RN solution

is in the unstable regime. Only the spherical case (` = 0) will be studied. If f(φ) = 1 and h(φ) = −αφ2

(with α > 0), which shall be studied in greater detail later, one has µ2
eff = −2αQP/r4. 1 For ` = 0, one

finds the following exact solution

U(r) = LPu

[
− (Q2 + P 2)(r − 2rH) + r2

Hr

r(Q2 + P 2 − r2
H)

]
, where u ≡ 1

2

(√
1− 8αQ

1 +Q2
− 1

)
, (4.24)

with Q = P/Q the magnetic to electric charge ratio and LPu a Legendre function. The function U(r)

approaches a constant non-zero value as r →∞

U(r)→ U∞ = LPu

[
1 +

√
1− q2

1 +
√

1− q2 − q2

]
+O

(
1

r

)
, (4.25)

thus finding the ` = 0 unstable mode of the RN BH reduces to a study of the zeros of the Legendre function

– c.f. Fig. 4.1 (left panel). Bifurcation requires α above a minimum value given by αmin = 1+Q2

8Q . Some

values can be found in Table 4.1.

Q 0.01 0.1 0.2 0.3 0.4 0.5 0.6 1 2 4

αmin 12.5013 1.2625 0.65 0.454167 0.3625 0.3125 0.28333 0.25 0.3125 0.53125

Table 4.1: Minimum value of α for bifurcation from a dyonic RN BH for several values of Q.

1In fact, this is true for any function h(φ) that respects h(0) = 0 and its Taylor expansion possesses a quadratic term of
the form −αφ2.
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Figure 4.1: Left: U∞ as a function of q for two values of P/Q and α = 40. An infinite set of configurations

with U∞ = 0 exist, labelled by n, the number of nodes of U(r). The first configuration for which U∞ = 0

is labelled by n = 0 and so on. Right: Existence line for several values of Q.

One can observe that for smaller Q, a bigger α is required for bifurcation, and bifurcation occurs

for a bigger q, contrarily to what was observed in Chapter 3. It is interesting to notice that for P = 0,

the Legendre function is constant and equal to unity, for all q, and so, it possesses no zeroes. One can

thus conclude that, if P = 0, then no scalarized BHs exist. The set of bifurcation points constitute the

existence line, and it is shown for several Q in the phase space of Fig. 4.1 (right panel).

4.4 Physical relations and tests to the code

To verify that the scalarized solutions obtained when solving numerically the coupled ODE system are

indeed physical we used, as before, two relations: a Smarr law and a Virial relation.

4.4.1 Smarr law

The Smarr law can be obtained via the integral mass formula, that for our model reads

M =
1

2
THAH −

1

16π

∫
V

(2T ba − Tδba)KadΣb, (4.26)

where Ka is the timelike translational killing vector, and T the trace of the energy-momentum tensor.

The energy-momentum tensor is

Tµν = 4

[
f(φ)

(
FµαF

α
ν −

1

4
gµνFαβF

αβ

)
+ ∂µφ∂νφ−

1

2
gµν∂αφ∂

αφ

]
. (4.27)

as it turns out to be unnafected by the Fµν F̃
µν term in the action (topological invariant). One can thus

arrive at the Smarr law

M =
1

2
THAH + ΦeQ+ ΦmP + U, (4.28)
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with

Φe =

∫ ∞
rH

dr

(
Q+ Ph(φ)

r2f(φ)
e−δ
)
≡ −

∫ ∞
rH

drV ′, Φm =

∫ ∞
rH

dr

(
e−δf(φ)

P

r2

)
≡ −

∫ ∞
rH

drV ′m, (4.29)

the electrostatic and magnetostatic potential differences respectively, and

U = −
∫ ∞
rH

drV ′Ph(φ) =
1

16π

∫
Fµν F̃

µνh(φ)d3x, (4.30)

is interpreted as the axion-like related electromagnetic energy. A non-linear Smarr relation can also be

established for this family of models

M2 +Q2
s + U2 = Q2 + P 2 +

1

4
A2
HT

2
H . (4.31)

4.4.2 Virial relation

Consider the effective action

Seff =

∫ ∞
rH

drLeff , (4.32)

and assume that hairy BH solutions exist such that they are described by the functions φ(r), δ(r), V (r), N(r)

with suitable boundary conditions at the event horizon and at infinity. Next consider the 1-parameter

family of configurations described by the scaled functions

Fλ(r) ≡ F (rH + λ(r − rH)), (4.33)

with F ∈ {φ, δ, V,N}. If the initial configuration was indeed a solution, then there must be a critical

point at λ = 1 such that the effective action is extremized:

(
dSλeff
dλ

)
λ=1

= 0. It is then straightforward

to obtain a Virial relation given by

∫ ∞
rH

dr
{
e−δr2φ′

2
[
1− rH

r
(1 +N)

]}
= ΦeQ+ ΦmP + U +

∫ ∞
rH

dr

{
2rH
r

[V ′Q+ V ′mP + V ′Ph(φ)]

}
.

(4.34)

One can show that the left hand side integrand is strictly positive. Thus, the virial identity shows

that a nontrivial scalar field requires a nonzero electric/magnetic charge so that the right hand side is

nonzero.

4.5 Perturbative stability analysis

For studying perturbative stability against radial perturbations, we consider spherically symmetric, linear

perturbations of our equilibrium solutions, keeping the metric ansatz, but allowing the functions N, δ, φ, V
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to depend on t as well as on r:

ds2 = −Ñ(r, t)e−2δ̃(r,t)dt2+
dr2

Ñ(r, t)
+r2(dθ2+sin2 θdϕ2) , A = Ṽ (r, t)dt−P cos θdϕ2 , φ = φ̃(r, t) .

(4.35)

The time dependence enters as a periodic perturbation with frequency Ω, for each of these functions:

Ñ(r, t) = N(r) + εN1(r)e−iΩt , δ̃(r, t) = δ(r) + εδ1(r)e−iΩt , (4.36)

φ̃(r, t) = φ(r) + εφ1(r)e−iΩt , Ṽ (r, t) = V (r) + εV1(r)e−iΩt .

From the linearised field equations around the background solution, the metric perturbations and V1(r)

can be expressed in terms of the scalar field perturbation,

N1 = −2rNφ′φ1 , δ′1 = −2rφ′φ′1 , V ′1 = −V ′
(
δ1 +

ḟ(φ)

f(φ)
φ1

)
+
e−δPḣ(φ)

f(φ)r2
φ1 , (4.37)

thus yielding a single perturbation equation for φ1. Introducing a new variable Ψ(r) = rφ1, the scalar-field

equation of motion may be written as

(
Ne−δ

)2
Ψ′′ +Ne−δ

(
Ne−δ

)′
Ψ′ +

(
Ω2 − UΩ

)
Ψ = 0, (4.38)

which, by introducing the ’tortoise’ coordinate x as dx
dr = 1

e−δN
, can be written in the standard Schrödinger-

like form:

− d2

dx2
Ψ + UΩΨ = Ω2Ψ . (4.39)

The perturbation potential UΩ is defined as:

UΩ = U0 + PU1 + P 2U2, (4.40)

with

U0 =
e−2δN

r2

{
1−N − 2r2φ′2 − Q2

r2f(φ)
U
}
,

U1 =
e−2δNQ

r4f(φ)

{
ḧ(φ) + 4rḣ(φ)φ′ − 2h(φ)U

}
,

U2 =
e−2δN

r4

{
f̈(φ)

2
+ 2rφ′ḟ(φ)− f(φ)(1− 2r2φ′2)+

1

f(φ)

[
ḧ(φ)h(φ)− ḣ(φ)2 + 4rφ′ḣ(φ)h(φ)− h(φ)2U

]}
,

U = 1− 2r2φ′2 +
f̈(φ)

2f(φ)
+ 2rφ′

ḟ(φ)

f(φ)
−

(
ḟ(φ)

f(φ)

)2

.

(4.41)
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4.6 Particular cases of the model - results

Now that the model has been shown, we will study particular cases. We shall focus on cases for which

scalarization is sourced by the coupling to the Lorentz Chern-Simons term, while keeping f(φ) = 1.

4.6.1 A Toy Model

We will start with a toy model that shows that spontaneous scalarization is possible in this new class of

models. Consider the particular case where the background is flat (N(r) = 1 and δ = 0). The system

allows a scalar free configuration (the Coulomb configuration) given by

φ = 0, A =
Q

r
dt− P cos θdϕ. (4.42)

The scalar field equation of motion is

(r2φ′)′ − ḣ(φ)P

r2
(Q+ Ph(φ)) = 0. (4.43)

Introducing β(φ) = (Q+ Ph(φ))
2

and a new radial coordinate x = 1/r, one can arrive at

d2φ

dx2
− 1

2

dβ(φ)

dφ
= 0, (4.44)

which is similar to the motion of a particle in a potential. The motion of the particle is described via

the lagrangian L = T − U , with T =
(
dφ
dx

)2

and U = −β(φ). We notice the existence of a first integral

E0 = T +U =
(
dφ
dx

)2

− β(φ), from which analytical solutions for the radial profile of the scalar field may

be obtained by solving the integral

x =

∫
dφ√

E0 + β(φ)
=

∫
dφ√

E0 + (Q+ Ph(φ))2
, (4.45)

and then inverting. Consider now the coupling function

h(φ) =

√
Q2 − φ2 −Q

P
, (4.46)

that respects all the previously discussed conditions for the occurrence of spontaneous scalarization. It

is then trivial to obtain a closed form spherically symmetric configuration

φ =

√
E0 +Q2 tan

(
1
r

)√
1 + tan

(
1
r

)2 , A = QEll

(
1

r
, 1 +

E2
0

Q2

)
dt− P cos θdϕ, (4.47)

where Ell denotes the elliptic integral of second kind. Consider now a conducting sphere located at

r = r0. The energy of the configurations is

E = 2π

∫ ∞
r0

∫ π

0

−T tt r2 sin θdθdr = 2π

∫ ∞
r0

∫ π

0

ρ r2 sin θdθdr. (4.48)
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Denoting by Eφ 6=0 and by Eφ=0 the energy of the scalarized and scalar free configurations respectively,

one obtains

Eφ6=0 − Eφ=0 = 4π(E2
0 +Q2) sin

(
2

r0

)
, (4.49)

hence, the scalarized solution if energetically favoured in a set of bands given by

1

r0
∈ π]n+ 1/2, n+ 1[, (4.50)

where n ∈ N0 besides labelling the bands, also gives the number of nodes exterior to r0 of the scalar

field profile. A few conclusions about spontaneous scalarization through an axionic-type coupling may be

taken/emphasised from this toy model: (i) it is not exclusive of gravitational theories; (ii) it sometimes

leads to energetically favoured configurations.

4.6.2 The axionic case

Before jumping into a case where spontaneous scalarization occurs, we first study the axionic case from

[80], motivated by high energy physics, that in our model corresponds to f(φ) = 1 and h(φ) = −αφ, with

α a coupling constant and the scalar field φ hereby dubbed axionic. All BH solutions are scalarized, hence

no bifurcation points from the scalar free RN solution exist. We will study the domain of existence of such

axionic solutions (which is nowhere found in the literature) and verify if it is bounded by an extremal or

critical set of configurations. The radial profiles of the several functions at study are also compared with

known results [80] (which can in some way, constitute a third test to the code). Perturbative stability

analysis of such BHs is also done.

4.6.2.1 Radial profiles

Some typical solutions of the various functions that define scalarized BHs obtained from numerical inte-

gration can be found in Fig. 4.2 for two illustrative values of the coupling constant α = 15 and α = 35,

while keeping Q, P and rH constant (some characteristic quantities can be found in Table 4.2).

α P P/Q q M Qs Φe Φm U aH tH

15 0.006 0.05 0.6991237 0.171858 0.03441335 0.384395 0.0201273 -0.00204597 0.748456 0.992441

15 0.012 0.1 0.7116576 0.169461 0.061265 0.340575 0.0400918 -0.00579648 0.769778 1.02653

35 0.006 0.05 0.7138780 0.168306 0.06807724 0.324311 0.0200267 -0.00685364 0.780381 1.03639

35 0.012 0.1 0.742068 0.162517 0.094770 0.22572 0.0400274 -0.00946308 0.836965 1.0617

Table 4.2: Characteristic quantities for scalarized BH solutions for α = 15 and α = 35 for several values

of P/Q and rH = 0.29736.

A feature of these nodeless solutions is that the scalar field is a monotonically decreasing function of

the radius, hence φ0 is always a maximum of the scalar field. Data reveal that (as expected) for larger

couplings α, there is higher scalarization as seen in Fig. 4.2 and in the values of the scalar charge (Table

4.2). As previously referred, in [80] two approximations for the scalar field radial profile are derived from
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Figure 4.2: Scalarized BH radial functions for α = 15 and α = 35, with Q = 0.12, P = 0.012 and
rH = 0.29736.

eq. 4.9 as follows

φ(r) ≈ α QP

r+r−
ln

(
r

r − r−

)
+O(α2), for small α, (4.51)

φ(r) ≈ Q

αP

(
1− exp

(
−αP

r

))
, for large α, (4.52)

with r± = M ±
√
M2 −Q2 − P 2 the horizons of the unperturbed RN BH. A comparison between these

analytical approximations and the numerical results can be seen in Fig. 4.3.
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Figure 4.3: Comparison between the analytical approximations and the numerical results. Top left:
α = 0.3, Q = 0.12, P = 0.012, rH = 0.282474, approximation for small α. Top right: α = 100, Q = 0.12,
P = 0.012, rH = 0.529659, approximation for big α. Bottom left: α = 10, Q = 0.12, P = 0.012,
rH = 0.33453. Bottom right: α = 30, Q = 0.12, P = 0.012, rH = 0.33453. The approximations hold
really well for the appropriate cases. The intermediate cases show a clear deviance between the numerical
solution and the analytical approximations.
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We have derived two other analytical approximations for the large and small couplings (in a similar

way as in [80]) that suit better our model, that besides taking into account a value φ0 for the scalar field

at the event horizon, in the small coupling limit does not neglect α2 terms. These approximations are

φ(r) ≈ Q

αP
+ALP v

(
− (Q2 + P 2)(r − 2rH) + r2

Hr

r(Q2 + P 2 − r2
H)

)
+B LQv

(
− (Q2 + P 2)(r − 2rH) + r2

Hr

r(Q2 + P 2 − r2
H)

)
, for small α,

(4.53)

where LP and LQ are Legendre functions of first and second kind, respectively, and v = 1
2

(√
4α2Q2

1+Q2 + 1− 1
)

.

A and B are integration constants chosen such that an asymptotically vanishing solution is assured and

the value of the scalar field at the event horizon is φ0. For large couplings we have

φ(r) ≈ Q

αP

1 +

(
φ0

αP
Q − 1

)
sinh

(
αP
r

)
+ sinh

(
αP

(
1
r −

1
rH

))
sinh

(
αP
rH

)
 , for large α. (4.54)

Plots of these approximations, and comparison with the previous ones can be found in Fig. 4.4. Data

reveals that the new approximations hold indeed better than the previous ones, with the differences

being more relevant in the small coupling case, where the new approximation does not neglect α2 terms.

Although it can not directly be seen from Fig. 4.4, numerics indicate that the new large coupling

approximation gives an overall better approximation. Tests to the code reveal relative differences 10−9 for

the Virial relation, 10−8 for the Smarr law and as seen in Figs. 4.3 and 4.4, the analytical approximations

hold extremely well in the appropriate cases.
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Figure 4.4: Zoomed plots for the scalar field radial profiles, in order to make a comparison between the
new and first analytical approximations and the numerical results. Left: α = 0.3, Q = 0.12, P = 0.012,
rH = 0.282474. Right: α = 100, Q = 0.12, P = 0.012, rH = 0.529659.

4.6.2.2 Domain of Existence

The domain of existence, in the (α, q) plane, for scalarized solutions is presented in Fig. 4.5 (left panel).

The domain of existence is delimited, for sufficiently large α, by a set of critical solutions that we call the

critical line, as in previous chapters. At the critical line numerics suggest a divergence of the Kretschmann

scalar and a vanishing horizon area, whilst M and Qs remain finite and non-zero. Exceptions occur for
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Figure 4.5: Left: Domain of existence of scalarized solutions in the (α, q) plane, in the shadowed region.
The domain is bounded by a critical line at which solutions are singular, for each presented P/Q value.
Right: tH as a function of q for P/Q = 0.1. One observes that for small α, solutions approximate an
extremal RN BH.

very small2 values of the coupling, for which scalarization is almost negligible and solutions approximate

an extremal RN BH, c.f. Fig. 4.5 (right panel). It is interesting to notice that, along α = constant

branches, q increases beyond unity: therefore, scalarized BHs can be overcharged. We also remark that

for a given α, as q increases, so does the scalar field’s initial amplitude φ0. As already mentioned, the

scalar field profile is always such that the scalar field is monotonically decreasing. Thus, the global

maximum of the scalar field occurs at the BH horizon, and increases, for fixed α, with q, which means

one can take φ0 as a measure of q and vice-versa. As another feature, for higher magnetic charges (fixing

the electric charge Q) there is a wider domain of existence, which is completely opposite to the dyonic

scalarized BHs case of Chapter 3 (h(φ) = 0 and P 6= 0). In the last chapter we observed that extremal

solutions are obtained for smaller values of q for higher values of P/Q along the same α = constant

branches. This wider domain of existence, for larger P/Q, is expected since the coupling h(φ)Fµν F̃
µν is

directly proportional to P : for higher values of P/Q the scalar field couples more strongly to the source

term.

4.6.2.3 Perturbative stability

The potential UΩ is plotted in Fig. 4.6. It is not positive definite in all cases but it is regular in the entire

range −∞ < x < ∞. For other values of the coupling α, the potential always behaves in a similar way:

for sufficiently small values of P/Q, the potential is always positive (and hence, free of instabilities), until

P/Q reaches a value at which the potential starts to have a negative region. Moreover, the potential

vanishes at the BH event horizon and at infinity.

4.6.3 Spontaneous scalarization: power law coupling

A case for which spontaneous scalarization occurs is now studied, for the coupling function h(φ) =

−αφ2 (and f(φ) = 1 as before), hereby dubbed ”power law coupling”. The coupling constant α is

a dimensionless positive constant. This coupling function obeys all the necessary conditions for the

occurrence of spontaneous scalarization and is the natural generalisation of the axionic case. The radial

2”very small” is a somewhat ambiguous term, since it highly depends on the P/Q ratio.
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Figure 4.6: Perturbative potential, UΩ, for rH = 0.1204, Q = 0.12 and several values of P/Q. Left panel:
α = 5. Right panel: α = 10. One observes that the potential is always positive until a critical P/Q value
is reached, and afterwards it always has a negative region.

profiles and the domain of existence will be studied. Since the RN BH is a solution of the model (the

scalar free solution), an entropic analysis will be performed. Perturbative stability analysis is also done.

4.6.3.1 Radial profiles

Some typical solutions of the various functions that define scalarized BHs in the power law coupling,

obtained from numerical integration, can be found in Fig. 4.7 for two illustrative values of the coupling

constant, α = 20 and α = 35, while keeping Q, P and rH constant (some characteristic quantities can be

found in table 4.3). Two overtone solutions (with n = 1 and n = 2) are also presented.
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Figure 4.7: Top: scalarized BH radial functions for α = 20 (left) and α = 35 (right), with Q = 0.12,

P = 0.06 and rH = 0.44604. Bottom left: Overtone solution n = 1 with α = 10, Q = 0.12, P = 0.06

and rH = 0.171279. Bottom right: Overtone solution n = 2 with α = 10, Q = 0.12, P = 0.06 and

rH = 0.142733.
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α P P/Q q M Qs Φe Φm U aH tH

20 0.06 0.5 0.5516939 0.2431857 0.02174461 0.263942 0.134363 -0.000552335 0.84103 0.997441

20 0.072 0.6 0.5719615 0.244672 0.04789236 0.242883 0.160661 -0.00242039 0.830845 1.01522

35 0.06 0.5 0.5553367 0.2415905 0.07080436 0.206099 0.133572 -0.00422197 0.852173 1.03492

35 0.072 0.6 0.5769590 0.2425525 0.07730736 0.190191 0.160293 -0.00452185 0.845427 1.0373

Table 4.3: Characteristic quantities for scalarized BH solutions for α = 20 and α = 35, with Q = 0.12,

P = 0.06 and rH = 0.44604.

Most of the features from the axionic case are shared here: for the nodeless solutions φ0 is a max-

imum of the scalar field radial profile and for higher couplings there is bigger scalarization and smaller

electrostatic potentials. The overtones of Fig. 4.7 (bottom panel) have a much greater value of δ0 and

of the electrostatic potentials when compared with the fundamental solutions. From eq. 4.9, it is also

possible to derive two approximations, for small and large couplings, in a similar fashion as it was done

for the axionic case:

φ(r) ≈ ALPu
(
− (Q2 + P 2)(r − 2rH) + r2

Hr

r(Q2 + P 2 − r2
H)

)
+B LQu

(
− (Q2 + P 2)(r − 2rH) + r2

Hr

r(Q2 + P 2 − r2
H)

)
+O(α2), for small α,

(4.55)

where LPu and LQu are Legendre functions of first and second kind, respectively, and u = 1
2

(√
1− 8αQ

1+Q2 − 1
)

.

A and B are integration constants chosen such that an asymptotically vanishing solution is assured and

the value of the scalar field at the event horizon is φ0. For large couplings we have

φ(r) ≈
Q tanh

(√
αPQ
r

)
√
αPQ

, for large α, (4.56)

where the integration constants were chosen such that the solution is regular and asymptotically vanishing.

A comparison between these analytical approximations and the numerical results can be found in Fig.

4.8. The approximations, although visibly good, are qualitatively worse when compared to the ones of

axionic case (for an axionic profile). This happens due to the non-linearities induced by the quadratic

scalar field terms. The small coupling approximation neglects α2 terms and the large coupling one does

not possess the benefit of imposing the scalar field value at the event horizon, since one of the integration

constants was used to impose regularity of the approximation. We have noticed an interesting feature:

the toy model scalar field radial profile from eq. 4.47 results in an approximation that is a lot similar to

the one in study for large couplings, provided that the integration constant E0 is such that the value of

the scalar field at the event horizon is φ0. We remark that, once again, tests to the code reveal relative

differences 10−9 for the Virial relation, 10−7 for the Smarr law.

4.6.3.2 Domain of existence

Both in the previously studied axionic case and in the ones studied in Chapter 2, the domain of existence

was always bounded by a critical line: a set of critical solutions for which numerics suggest a divergence
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Figure 4.8: Comparison between the analytical approximations and the numerical results. Top left:
α = 1, Q = 0.12, P = 0.06, rH = 0.142733, approximation for small α. Top right: α = 100, Q = 0.12,
P = 0.06, rH = 0.683928, approximation for big α.

of the Kretschmann scalar and of the temperature, at the horizon, and a vanishing of the horizon area,

whilst M and Qs remain finite and non-zero. Upon evolving the α = constant branches with the previous

near-horizon expansion, a different behaviour for the solutions was observed: numerics suggest that the

temperature of the horizon tends to zero, while the Kretschmann scalar does not diverge, and the horizon

area remains finite and non-zero, which is compatible with near-extremal BH solutions. As discussed in

Chapter 3, a characteristic of extremal BH solutions is a vanishing horizon temperature, hence, in order

to obtain the extremal BH solutions, a different near-horizon expansion which accounts for a degenerate

horizon must be used (see e.g. [47, 64, 65]), and a double zero on the function N(r) has to be imposed,

with the leading order terms being

N(r) = N2 (r − rH)
2

+ . . . ,

φ(r) = φ0 + φc (r − rH)
k

+ . . . .
(4.57)

Taking φ0 and rH as the essential parameters one obtains

P = rH , Q = αφ2
0rH , N2 =

1

r2
H

, k =
1

2

(
1 +

√
1 + 16φ2

0α
2

)
, (4.58)

A non-integer k would imply that the derivative of all functions will diverge at some order as r → rH .

Although everything is smooth to second order (in particular, the Kretschmann and Ricci scalars should

be finite everywhere), the (suitable order) derivatives of the Riemann tensor would diverge at the horizon,

resulting in non-physical solutions. Thus, in order to obtain physical solutions, we arrive at another

condition

α =

√
p(p+ 1)

2φ0
, p ∈ N0. (4.59)

The domain of existence, in the (α, q) plane is presented in Fig. 4.9.

One can observe that there is a region of non-uniqueness where, for the same charge to mass ratio

q < 1, RN BHs and scalarized BHs co-exist. Unlike in the domain of existence of the axionic case, one

can observe that for higher P/Q values, there is a narrower domain of existence, which is unexpected
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Figure 4.9: Domain of existence of scalarized solutions in the (α, q) plane. The domain is bounded by
an extremal line (solid lines) at which solutions are extremal BHs and by an existence line (dashed), for
each presented P/Q value.

since the coupling h(φ)Fµν F̃
µν is directly proportional to P , raising the question: is there any region for

which the domain of existence is wider for a bigger P/Q ratio? There is, as presented in Fig. 4.10 (left

panel). For a region where α is small enough, the domain of existence is wider for higher values of P/Q.
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Figure 4.10: Left: Zoomed domain of existence for P/Q = 0.2 and P/Q = 0.4. One observes that there
is a region at which the bigger value of P/Q allows greater overcharging. Right: (P/Q, q) plane. The
solid lines correspond to the extremal solution for each P/Q value, for a constant α. The black curve is
the curve that interpolates the optimum values of P/Q.

Numerics suggest this effect is related to the term proportional to Pḣ(φ) in the scalar field equation of

motion. More details can be found in Fig. 4.10 (right panel) that shows the (P/Q, q) plane. The solid

lines in blue correspond to the extremal solution for each value of P/Q, for a constant α. One can observe

that, for each α = constant line, there is an optimal value of P/Q at which overcharging (and hence the

domain of existence in that region) is maximum. The black curve is the curve that interpolates those

optimal values of P/Q. Take the example of Fig. 4.10 (left panel): one can observe that for α = 3 there

is a bigger allowed value of q for P/Q = 0.4 than for P/Q = 0.2. Numerical integration reveals that,

overall, the domain of existence is wider for smaller P/Q values.
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4.6.3.3 Perturbative stability

The potential UΩ is plotted in Fig. 4.11. It is not positive definite but is regular in the entire range

−∞ < x <∞. For other values of the coupling and P/Q ratios the potential always has a similar form.

Also, the potential vanishes at the BH event horizon and at infinity. As discussed before, the existence

of a region of negative potential does not imply instability. Thus, conclusions about stability can only be

taken by computing the values of Ω by solving the perturbation equation (similarly to what was done in

[43] for the purely electrical case) or with fully non-linear simulations.
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Figure 4.11: Sequence of perturbative potentials, UΩ, for α = 10, P/Q = 0.4 (left) and P/Q = 0.5 (right).
The deeper potentials at each figure, occur for higher values of q. There is always a region where the
potential is negative. Left panel: bottom curve has q = 0.785 and top curve has q = 0.736. Right panel:
bottom curve has q = 0.746 and top curve has q = 0.701.

4.6.3.4 Entropic preference

In this model, the Bekenstein-Hawking BH entropy formula holds. Thus, the entropy analysis reduces

to the analysis of the horizon area. It is convenient to use the already introduced reduced event horizon

area aH . Then, in the region where the Reissner-Nordstöm BHs and scalarized BHs co-exist - the non-

uniqueness region -, for the same q, the scalarized solutions are always entropically preferred as seen in

Fig. 4.12.
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Figure 4.12: aH vs q for P/Q = 0.5 and P/Q = 0.6. The blue lines are the sequence of non-scalarized
BHs, while the red lines are sequences of (numerical data points representing) scalarized BHs for a given
α. The black line represents the entropy of the extremal BH solutions for the different α values.
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Chapter 5

Conclusions and Future Work

In this work we studied BH spontaneous scalarization in the framework of EMS models. We started

with a study of purely electric BH for four different types of coupling functions. For all the studied

couplings, the scalarized solutions are entropically favoured over a comparable RN BH in the region

where non-uniqueness holds, which creates a difference with respect to eSTGB scalarized BHs, that are

not entropically prefered for the same power-law coupling. The power-law, hyperbolic and exponential

couplings are qualitatively very similar, although the exponential coupling maximises differences with

respect to the RN case. Fundamental spherically symmetric BHs were found to be generically pertur-

batively stable, which is not necessarily true for eSTGB BHs (entropic non-preference and perturbative

instability are probably related). The fractional coupling, on the other hand, yields qualitative differences

with the existence of a different type of boundary in the domain of existence, bounding the region where

physical solutions exist (solutions with positive energy density in all the extent of the radial coordinate).

This boundary is associated to the divergent behaviour of the coupling for a certain value of the scalar

field. In what respects dynamical evolution, results from [1, 38] show that the endpoint of unstable RN

BHs in the EMS models are, for small enough q, scalarized RN BHs with the same value of q, whereas

for higher values of q evolution is not conservative. Also, it was observed that the endpoint of unstable

RN BHs under non-spherical perturbations are spherically symmetric scalarized BHs.

A second line of research was related to the inclusion of magnetic charge in the EMS models, yielding

dyonic BHs, and the understanding of its consequences. In the well known dilatonic case, dyonic BHs

have a regular extremal limit (with zero Hawking temperature), whereas purely electrical (or magnetical)

ones do not; the latter becomes singular, approaching a critical solution when endowed with the maximal

possible charge for a given mass. Given the special features of smooth extremal solutions, it is of interest

to understand the status of these solutions in the generic EMS case, since for purely electric scalarized

BHs maximal charge led to critical, rather than extremal, solutions. It was shown that the conclusions

for generic EMS BHs are similar to the ones of dilatonic BHs, yielding an extremal limit. Within

our framework, extremal dyonic BHs for the dilatonic case are constructed for arbitrary couplings α,

whereas solutions are known in analytic closed form only for some specific values of the coupling. The

entropy of scalarized BHs was computed revealing, as in the purely electric case, that scalarized solutions
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are entropically favoured over a comparable RN BH in the region where non-uniqueness holds. It was

shown that dilatonic BHs are always perturbatively stable, whereas, for sufficientely large magnetic

charge, scalarized BHs yield a region where the perturbative potential is negative (which does not imply

instability).

Lastly, the EMS model was generalised to include an axionic-like coupling. A discussion on the

necessary conditions for the occurrence of spontaneous scalarization in the new model was made, and a

toy model presented, which showed that the process is not exclusive of gravitational theories and that

scalarized solutions can be energetically favoured provided that some conditions hold. Then the well

known case of the axionic coupling was studied. The domain of existence of such solutions was obtained,

being bounded by a critical line for sufficiently large α (even though magnetic charge is present), and

approximating extremal RN BHs for small values of the coupling. The radial functions profiles were

studied, resulting in new analytical approximations that reproduce the numerical results better than the

ones previously known in the literature and a perturbative stability analisys was done, revealing that BHs

with axion hair are perturbatively stable. A similar procedure was followed for a power-law coupling, for

which spontaneous scalarization occurs. The domain of existence of such solutions was obtained, now

being bounded by an existence line (that depends on the magnetic to electric charge ratio) and by a set

of extremal solutions, as occurred in the EMS dyonic model. Once again, the radial functions profiles

were studied, analytical approximations were obtained and perturbative stability analisys was done,

revealing that there is always a region where the potential is negative (which does not imply instability).

It was shown that in the region of non-uniqueness, scalarized solutions are entropically prefered over

the comparable RN BHs. In what concerns dynamical evolution, results from [2] show, through fully

non-linear simulations, that the spontaneously scalarized BHs do form dynamically.

As an avenue of further research one may include a mass term for the scalar field. As in the case of

other scalar-tensor theories this is expected to suppress the effects of scalarization. Preliminary results

were obtained and revealed that (i) the existence line changes; (ii) scalarization requires a larger coupling

as compared to the mass-free case; (iii) the mass term quenches the dispersion of the scalar field, which

becomes more concentrated in the neighbourhood of the horizon. It would be interesting to analyse such

inclusion of a mass term in greater detail. Another possible extension to the EMS models would be the

inclusion of rotation, similarly to what was done in ref. [40] in the context of eSTGB BHs. It would also

be interesting to perform a complete study of the quasi-normal modes of scalarized BHs for both dyonic

BHs of Chapter 3 and axionic(-like) BHs of Chapter 4, similarly to what was done in ref. [43].
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Appendix A

Dynamical preference in the EMS

model

A.1 Dynamical preference for Chapter 2 BHs (purely electric

case)

Fully non-linear simulations, whose details are beyond the scope of this thesis, were performed in [1, 38]

to assess the dynamical endpoint of the evolution of unstable RN BHs under a small perturbation in the

EMS model.

The evolution of the process can be observed in Fig.A.1, wherein four snapshots, at times t =

0, 100, 175, 225, are shown for the exponential coupling with q = 0.2 and α = −400.979.

Figure A.1: Four snapshots of the time evolution of the scalar field around an unstable RN BH with

q = 0.2 in the EMS model, with the exponential coupling and α = −400.979.

The ` = 0 small Gaussian perturbation triggered the growth of a scalar cloud in the vicinity of the
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horizon that expands outwards and becomes a monotonically decreasing function of the radial coordinate.

The energy transfer to the scalar field saturates by t ∼ 100 and it reaches an equilibrium state, at least

in the vicinity of the BH, around t ∼ 200, albeit part of the more exterior scalar field distribution is still

evolving outwards, settling down to the scalarized solution. The same qualitative pattern is observed for

other couplings for which scalarization occurs.

The endpoint of the evolution shown in Fig. A.1 is a scalarized BH with the same value of q. This was

established by comparing the value of the scalar field on the horizon obtained in the numerical evolution

with the one of the previously computed static scalarized solution with the same coupling and q. As

explained before, fixing α, the value of φ0 ≡ φ(rH) serves as a measure of q. In Fig. A.2 (left panel) this

comparison is made for various values of α, fixing q = 0.2 of the initial RN BH, for both the exponential

coupling and the power law coupling. The crosses are from the numerical evolutions and the solid line

from the static solutions. The agreement is quite good. As discussed above, the power-law coupling

produces a weaker scalarization for the same coupling.

Fig. A.2 (right panel) performs a similar comparison, for the exponential coupling, but now exploring

a larger range of values of q. Beyond q ∼ 0.4, the agreement between the value of the scalar field on the

horizon obtained from the evolutions and that obtained from the static solutions with the same q, ceases

to hold. In other words, the endpoint of the evolution of a RN BH with a certain value of q is not a

scalarized BH with the same value of q. Rather, the former matches a scalarized BH with a lower value

of q. This is interpreted as a non-conservative evolution which ejects a larger fraction of electric charge

than energy when forming the scalarized BH.
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Figure A.2: (Left panel) Scalar field value at the horizon for q = 0.2 and a range of couplings α, for the

exponential and power-law coupling. The solid line is obtained from the static solutions. The crosses

are the dynamically obtained value from the numerical simulations after saturation and equilibrium has

been reached. The agreement is notorious. (Right panel) A similar study, for the exponential coupling,

but for various values of q. The agreement between the points and the lines with the same q is restricted

to q . 0.4. For larger q, the evolution points match static solution lines with a smaller q.

To address the dynamical role of non-spherically symmetric scalarized BHs, evolutions of an unstable
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RN BH under a non-spherical perturbations with ` = 1, 2 were performed. In Fig. A.3 snapshots of

such an evolution are shown for the ` = 2 case. It can be observed that, initially, the non-spherical

mode dissipates/is absorbed; then scalarization proceeds much as in the case of a spherical perturbation.

Similar results are obtained for the ` = 1 perturbation. Thus, scalarization is robust, even without

imposing spherical symmetry and, moreover, no evidence of the formation of the non-spherical scalarized

solutions is observed. This suggests such solutions may be unstable.

Figure A.3: Twelve snapshots in the x − z (y = 0) plane of the time evolution of an unstable RN BH

with q = 0.2 in the EMS system, with the exponential coupling and α = −1200 and an ` = 2, m = 0

perturbation. The snapshots correspond to t between 0 and 140.8. The data for negatives values of x

and z are mirrored by the corresponding positive values, due to equatorial symmetry.

A.2 Dynamical preference for Chapter 4 BHs (axionic case)

Fully non-linear simulations, whose details are beyond the scope of this thesis, were performed in [2]

to assess the dynamical endpoint of the evolution of unstable RN BHs under a small perturbation in

the EMS-axionic model. In the dynamical scenario, the scalar perturbation triggers the spontaneous

scalarization of the RN BH. The electric charge decreases as the energy of the field increases, while the

magnetic charge remains unchanged, until the equilibrium is reached and a scalarized solution forms

at the endpoint of the dynamical scalarization. The scalar cloud grows near the horizon and expands

radially. The radial profile of the cloud decreases monotonically with increasing radii. In Fig. (A.4),

the scalar field value at the horizon φ(rH) is plotted for both the dynamical evolutions and the static

solutions with the same Q and P . A notorious agreement with the static solutions is obtained. As in the

last section, the dynamical solutions match better the static ones for lower values of Q.
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Figure A.4: Scalar field value at the horizon obtained via the dynamical simulations and the static

solutions for different values of Q and P .
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Appendix B

Exact solutions with a dilatonic

coupling

B.1 Purely electric BHs

Purely electric dilatonic solutions of 3.3 with the dilatonic coupling (3.31) were first considered by Gibbons

and Maeda [61] and Garfinkle, Horowitz and Strominger [62]. The BH solution has the line element

ds2 = −a(r)2dt2 + c(r)2dr2 + b(r)2(dθ2 + sin2θdϕ2), (B.1)

with

a(r)2 =
1

c(r)2
=
(

1− r+

r

)(
1− r−

r

) 1−α2

1+α2

, b(r) = r
(

1− r−
r

) α2

1+α2

, (B.2)

together with the Maxwell potential and dilaton field1

A =
Q

r
dt , e2φ =

(
1− r−

r

) 2α
1+α2

. (B.3)

The two free parameters r+, r− (with r− < r+) are related to the ADM mass, M , and (total) electric

charge, Q, by

M =
1

2

[
r+ +

(
1− α2

1 + α2

)
r−

]
, Q =

(
r−r+

1 + α2

) 1
2

. (B.4)

For all α, the surface r = rH = r+ is the location of the (outer) event horizon, with

AH = 4πr2
+

(
1− r−

r+

) 2α2

1+α2

, TH =
1

4π

1

r+ − r−

(
1− r−

r+

) 2
1+α2

. (B.5)

The extremal limit, which corresponds to the coincidence limit r− = r+, results in a singular solution (as

can be seen e.g. by evaluating the Kretschmann scalar). In this limit, the area of the event horizon goes

1Following the conventions in the work, we fix φ(∞) = 0 for all solutions in the Appendix.
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to zero for α 6= 0. The Hawking temperature, however, only goes to zero in the extremal limit for α < 1,

while for α = 1 it approaches a constant, and for α > 1 it diverges (as was observed in Fig. 3.2).

The reduced quantities have the following exact expressions:

q =
2
√

(1 + α2)x

1 + α2(1− x) + x
, aH =

(1 + α2)2(1− x)
2α2

1+α2

(1 + α2(1− x) + x)2
, tH =

(1− x)
1−α2

1+α2 (1 + α2(1− x) + x)

1 + α2
,

where 0 6 x 6 1 is a parameter.

B.2 Dyonic BHs

Dyonic dilatonic BH solutions are known in closed analytic form for α =
√

3 and α = 1 [47]. Here we

address the latter as an illustrative example. A dyonic dilatonic BH solution of eq. 3.3, with the dilatonic

coupling 3.31 and α = 1, was found in [94], and extensively discussed in the literature, since it can be

embedded in N = 4 supergravity. Taking the form (B.1), it has

φ =
1

2
log

(r + Σ)

(r − Σ)
, a(r)2 =

1

c(r)2
=

(r − r+)(r − r−)

(r2 − Σ2)
, b(r)2 = r2 − Σ2 , (B.6)

where

r± = M ±
√
M2 + Σ2 −Q2 − P 2 , (B.7)

and the outer horizon is at rH = r+, while M,Q,P are the mass and electric and magnetic charges. Σ

corresponds to the scalar charge, which, however, is not an independent parameter (the hair is secondary):

Σ =
P 2 −Q2

2M
. (B.8)

The extremal limit of the above solution corresponds to r+ = r−, in which case one finds two relations

between the charges

0 = M2 + Σ2 −Q2 − P 2 =⇒ (M + Σ)2 − 2P 2 = 0 and (M − Σ)2 − 2Q2 = 0 . (B.9)

The horizon area and Hawking temperature of the solutions are

AH = 4π(2Mr+ − P 2 −Q2) , TH =
1

2π

r+ −M
2Mr+ − P 2 −Q2

. (B.10)

The expression of the reduced quantities is more involved in this case:

aH =
1

4
(2x− q2) , tH =

4(x− 1)

2x− q2
, (B.11)

with x a parameter expressed in terms of q as a solution of the equation (where Q = P
Q )

q4 − 4(1 +Q2)2

(1−Q2)2
(q2 + x(x− 2)) = 0 . (B.12)
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