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Abstract

In this thesis, we discuss Gauss-Bonnet theories of gravity, with a focus on the topic

of 4D Einstein-Gauss-Bonnet gravity, which has been the subject of considerable

interest over the past years. The thesis begins with a general introduction to gravi-

tational physics, General Relativity, and its successes and shortcomings. We review

Lovelock’s theorem, and the subject of Gauss-Bonnet terms in the action for grav-

ity. These areas are of fundamental importance for understanding modified theories

of gravity, and inform our subsequent discussion of recent attempts to include the

effects of a Gauss-Bonnet term in four spacetime dimensions by re-scaling the ap-

propriate coupling parameter. We discuss the mathematical complexities involved

in implementing this idea, and attempts at constructing well-defined, self-consistent

theories that enact it. We then move on to consider the gravitational physics that

results from these theories, in the context of black holes, cosmology, and weak-field

gravity, showing that 4D Einstein-Gauss-Bonnet gravity exhibits a number of in-

teresting phenomena in each of these areas. We follow up with the derivation of a

generalized conformally coupled scalar field theory, which turns out to be intimately

connected with the well-defined 4D Einstein Gauss-Bonnet gravity theories, and

study its phenomenology. Adopting a more standard framework for Gauss-Bonnet

theories in four dimensions, we also study the small mass limit of black holes and how

it impacts on the self-consistency of these models. Finally, we study how spectral

methods can be used to solve, with high accuracy, the systems of partial differential

equations that result from the stationary and axisymmetric gravitational field equa-

tions in (generic) modified theories of gravity, obtaining with success spinning black

holes in General Relativity, as a benchmark, and scalar-Gauss-Bonnet gravity. The

estimated accuracy of the obtained solutions represent an improvement of several

orders of magnitude with respect to other existing codes.
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Notation and Conventions

The metric signature is chosen to be (−,+,+,+), spacetime indices are denoted

with Greek letters and spatial indices are denoted by Latin letters (i, j, k, . . .). We

typically work in units such that c = G = ℏ = kB = 1, although factors may

occasionally be included for clarity.
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gµν spacetime metric
g determinant of the metric
Γα
µν Christoffel symbol of the metric gµν

∇µ covariant derivative compatible with the
metric gµν

Rµανβ Riemann tensor
Cµανβ Weyl tensor
Pµανβ double-dual of the Riemann tensor
Rµν Ricci tensor
R Ricci scalar
Gµν Einstein tensor
Λ cosmological constant
Tµν stress-energy tensor
Fµν Maxwell tensor
T trace of the stress-energy tensor
ds2 line element
G Gauss-Bonnet term
G Gravitational constant
c speed of light
ℏ Planck’s constant
kB Boltzmann’s constant

Mpl =
√

ℏc
G

Planck mass

Mpl =
√

ℏc
8πG

reduced Planck mass

lpl =
√

ℏG
c3

Planck length

D dimensionality of the spacetime
□ ∇µ∇µ

(∇ϕ)2 ∇µϕ∇µϕ
BH Black Hole
GB Gauss-Bonnet
GR General Relativity
FLRW Friedmann-Lemâıtre-Robertson-Walker
(A)dS (Anti-)de Sitter
GW Gravitational Wave
4DEGB 4D-Einstein-Gauss-Bonnet
EsGB Einstein-scalar-Gauss-Bonnet
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1 Introduction

1.1 How we got where we are

The year was 1687 when mathematician and physicist Isaac Newton published

Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural

Philosophy) [9], in what turned out to be one of the most remarkable achievements

of humankind. In it, the three laws of motion and the law of gravitation. With

these rules in hand, the world around us finally made sense, from bouncing billiard

balls to the motion of a falling apple or that of the heavenly bodies.

Newton’s law of gravitation is as simple and elegant as can be, stating that the

gravitational force between two objects of masses m1 and m2 at a distance r follows

an inverse square law

F = G
m1m2

r2
, (1.1)

where G is the gravitational constant. Since its inception, it has been able to explain

and predict a plethora of physical phenomena. Indeed, Newton’s law of gravitation

would strongly reward those whose faith in its correctness was unshakeable.

1.1.1 The theory is correct

By the end of the 18th century there were signs that the orbit followed by the planet

Uranus was anomalous. When confronted with observational data, the predictions

that followed from Newton’s gravitational law were simply inaccurate. Was the

theory wrong?

It was not until 1846 that astronomer and mathematician Urbain Le Verrier came

along to postulate the existence of a new celestial body, the culprit whose gravita-

tional influence on Uranus, as described by Newton’s law, was responsible for the

mischievous deviation from theoretical predictions [10]. It would not be long until

Le Verrier’s planet was discovered at the predicted position. Le Verrier’s planet

is nowadays commonly known as Neptune. The world was excited by the find, for

never before had mathematics predicted a natural object. Newton’s law of gravita-
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tion prevailed.

1.1.2 Or is it?

The sirens rang once again as observations dictated that Mercury’s orbit was anoma-

lous in light of Newton’s theory. Indeed, its perihelion precessed with a discrepancy

of about 43 arcseconds per century. For Le Verrier, the solution was obvious: some

undetected mass, Vulcan [11], orbiting even closer to the Sun, was giving Mercury

a regular gravitational push. Was another planet bound to be discovered at the tip

of Le Verrier’s pen? In the decades that followed, astronomers looked and searched,

but the innermost planet was nowhere to be found. Mercury simply refused to obey

the laws of gravity as formulated by Isaac Newton.

While discussions about the nature of Mercury’s orbit were ongoing in the scien-

tific community, James Clerk Maxwell formulated the laws of electromagnetism [12].

They were able to describe accurately electricity, magnetism and light as different

manifestations of the same phenomenon. Maxwell’s recently formulated theory was,

however, at odds with Newton’s laws of motion. Newtonian mechanics was built

upon the Galilean Principle of Relativity, that assumes the existence a universal

entity called time which is independent of the observer, and that the laws of motion

are invariant under a Galilean transformation. Maxwell’s theory was in conflict with

such principle. In particular, Maxwell’s equations predicted that the speed of light,

c, is constant regardless of the state of motion of the reference frame in which it is

measured in, clearly in contradiction to Newton’s theory. Experimental facts such

as the null result obtained by Michelson and Morley [13] demonstrated that the his-

torically hypothesized luminiferous aether did not exist, supporting the constancy

of the speed of light.

Aware of this incompatibility, Albert Einstein worked towards a solution, and was

successful when in 1905 he formulated Special Relativity [14]. In Einstein’s novel

view of the world, the laws of physics are the same in all inertial frames, and the

speed of light is the same for all observers, regardless of the motion of the light source

or observer, and time and space are not absolute. The laws of motion had been

rewritten, predicting and explaining with success a series of physical phenomena.

These fundamental changes to the laws of physics were, nonetheless, ineffective in

explaining Mercury’s anomaly.
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1.1.3 “Modified Gravity”

Soon after formulating special relativity, Albert Einstein started thinking about

how to modify Newton’s theory as to incorporate gravity into his new relativistic

framework. It would take him another eight years and numerous detours and false

starts before he finally presented in 1915 his theory of General Relativity (GR)

described by the well-known field equations1 [15]

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
Tµν . (1.2)

When asked what he would do if observations failed to match his theory of General

Relativity, Einstein famously replied: “Then I would feel sorry for the good Lord.

The theory is correct.”. Fortunately for the good Lord, Einstein’s modified theory

completely overthrew Newtonian gravity. Besides being compatible with special rel-

ativity, the theory’s prediction of Mercury’s perihelion precession matched perfectly

the observed value without the need of any unknown planet/mass, and predicted

and explained with success other phenomena, such the gravitational deflection of

light by massive objects, as measured in 1919 during a solar eclipse by Arthur

Eddington [16]. Moreover, Einstein’s theory reduces to Newtonian gravity in the

appropriate limit, and is thus a generalization thereof.

1.2 Where we are

More than a hundred years have passed since the formulation of general relativity.

With Einstein’s theory at hand we were able to try and describe our cosmos and its

evolution, predict and confirm the existence of black holes and gravitational waves.

It is extremely well tested in the weak field regime, and solar system and pulsar

binary scales. Consequently, it is not surprising that GR continues to reign as the

most successful and well-accepted theory of gravity [17,18]. However, this might be

about to change.

Our current best cosmological model, Λ Cold Dark Matter (ΛCDM), is based on

general relativity and posits the existence of a dark sector to fit observations. This

dark sector is constituted by dark matter, needed to explain e.g. dynamics in galaxies

and galaxy clusters (see e.g. [19–21]), and dark energy responsible for the late-time

accelerated expansion of the Universe, first discovered in the late 90s [22, 23]. In

1Here we chose to include the cosmological term, even though it was absent from the original
formulation.
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the ΛCDM model, baryonic matter constitutes only about 5% of the mass-energy

content of the universe, with dark matter and dark energy constituting about 26%

and 69% respectively.

The ΛCDM model is not without shortcomings. First and foremost, the nature of

the dark sector is unknown, indicating that about 95% of the energy content of the

universe is unknown to us. So far, much like Le Verrier’s Vulcan, the dark sector has

been elusive, escaping all direct detection attempts. Although dark energy might be

explained using merely a cosmological constant with a value ρΛ = Λc2

8πG
∼ (10−3 eV)

4
,

there are strong theoretical and conceptual objections to this picture. The problem

relates to the spectacular mismatch of about 120 (!) orders of magnitude between

the observed value of the cosmological constant and theoretical expectation, based

on naturalness and the standard description of quantum fields in a vacuum [24,25].

This is known as the cosmological constant problem [24]. ΛCDM also faces many

observational challenges [26], such as the H0 tension that has become the most

notorious tension in cosmology in recent years [27], and the σ8 tension [28]. A good

and fundamental understanding of the early Universe, namely of the inflationary

epoch and subsequent reheating is also lacking.

To the best of our understanding, there are four fundamental interactions in Na-

ture. These are the strong, weak, electromagnetic and gravitational interactions.

The first three are quantum interactions successfully explained by standard model

of particle physics, whereas gravity is classically described by GR. Power-counting

arguments indicate that GR is not renormalizable in the standard quantum field

theory sense, and a quantum description of gravity is currently unknown [29]. How-

ever, as we probe smaller and smaller length scales, quantum gravitational effects

cannot be ignored. One simple example is that of a black hole with mass of the

order of a Planck mass. In this setting, the Compton wavelength, which gives a

lower bound on the length on which the mass can be localized, becomes comparable

with the Schwarzschild radius of the black hole, and we need a quantum mechanical

description of gravity. GR further seems to predict the existence of singularities,

both inside black holes and at the beginning of the Universe, signaling a breakdown

of the theory, and presumably a new quantum description is needed.

In addition to the questions raised concerning the validity of GR on cosmological

and quantum scales, we have only just started to test gravity in the strong field

regime, with the advent of gravitational wave astronomy and black hole imaging

by the discoveries of the LIGO-Virgo [30] and Event Horizon Telescope [31, 32]

collaborations, respectively, allowing us to probe previously inaccessible regimes

with ever-increasing accuracy.
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Much like physicists working with Newtonian gravity at the turn of the 19th

century, we now have at hand many problems without satisfactory solutions given

our current best theory of gravity, and it may well be that, as before, the solution

to these problems is modified gravity. In this work we seek to explore alternatives

to Einstein’s theory.

1.3 A brief review of General Relativity

Before we delve into the realm of modified theories of gravity, let us review the basics

of Einstein’s theory and differential geometry following Refs. [33,34]. General Rela-

tivity is a metric theory of gravity, where spacetime is described by a 4-dimensional

Lorentzian manifold, and whose fundamental dynamical variable is the symmet-

ric and invertible rank-2 metric tensor, gµν , which defines infinitesimal distances

between events in spacetime

ds2 = gµνdx
µdxν . (1.3)

Defining the covariant derivative, ∇µ, compatible with the metric and the Christoffel

symbols

Γµ
νλ =

1

2
gµρ (∂νgρλ + ∂λgνρ − ∂ρgνλ) , (1.4)

it is possible to define the Riemann curvature tensor

Rµ
νλρ = ∂λΓ

µ
νρ − ∂ρΓ

µ
νλ + Γµ

λσΓ
σ
νρ − Γµ

ρσΓ
σ
νλ. (1.5)

The Ricci tensor, Rµν , and Ricci scalar, R, are contractions of the Riemann curvature

tensor

Rµν = Rα
µαν , R = gµνRµν . (1.6)

A particularly important combination of these tensors is given by the divergence-free

Einstein tensor

Gµν = Rµν −
1

2
gµνR. (1.7)

The left-hand-side of Einstein field equations, given in Eq. (1.2), is composed of

a linear combination of the Einstein and metric tensors, as to ensure conservation

of the stress-energy tensor, Tµν , on the right-hand-side, that describes the matter

content of the theory.

The field equations for gravity also follow from an action principle, given by the
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Einstein-Hilbert action

S =
c4

16πG

∫
d4x

√
−g (R− 2Λ) + Smatter,

≡
M2

pl

2

∫
d4x

√
−g (R− 2Λ) + Smatter,

(1.8)

where g denotes the determinant of the metric tensor, and the variation of the matter

action gives the stress energy-tensor

Tµν = − 2√
−g

δSmatter

δgµν
. (1.9)

1.3.1 The basics of relativistic cosmology

Observations suggest that on cosmological scales the geometry of our Universe is

well-described by the homogeneous and isotropic Friedmann-Lemâıtre-Robertson-

Walker (FLRW) metric

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (1.10)

where k = {0,−1, 1} for flat, negatively-curved, or positively curved spatial sections,

respectively. Observations favor the flat case. Hereafter, an overdot denotes a

derivative with respect to the temporal coordinate t.

The evolution of the Universe is then intimately connected to its matter content

via the Einstein equations (1.2). Assuming the stress-energy tensor to be that of a

perfect fluid2

T µ
ν =

(
ρ+

p

c2

)
uµuν + p δµν , (1.11)

where ρ is the energy density, p the pressure and uµ is the four-velocity of the matter,

the Einstein equations result in the well-known Friedmann equations

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ+

Λc2

3
− kc2

a2
, (1.12)

Ḣ = −4πG
(
ρ+

p

c2

)
+
kc2

a2
, (1.13)

where the first equality serves to define the Hubble rate H. Conservation of the

2See Ref. [35] for a discussion on the variational principle for a perfect fluid.
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stress-energy tensor, ∇µT
µν = 0, further imposes

ρ̇ = −3H
(
ρ+

p

c2

)
. (1.14)

The pressure and energy density can be related through an equation of state p/c2 =

ωρ, where ω indicates the type of fluid considered, namely ω = {1/3, 0,−1} for

radiation, dust and dark energy, respectively. Matter is typically modeled as dust.

From the conservation of the stress-energy tensor one concludes that ρ ∝ a−3(1+ω).

1.3.2 The basics of black hole physics

The first non-trivial solution to the vacuum Einstein equations was discovered by

Karl Schwarzschild in 1916 [36]. It describes the spherically symmetric black hole

solution of general relativity, given by the line element3

ds2 = −
(
1− 2GM

rc2

)
c2dt2 +

dr2(
1− 2GM

rc2

) + r2
(
dθ2 + sin2 θdφ2

)
, (1.15)

where M is the mass of the black hole. Note that as the mass vanishes, we recover

flat spacetime and the metric is asymptotically flat. There is an event horizon

located at r = rs, where rs = 2GM
c2

is called the Schwarzschild radius. A physical

singularity exists at the centre of the black hole where the curvature diverges, as

can be seen e.g. from the Kretschmann scalar

RαβγρR
αβγρ =

12r2s
r6

.

The Schwarzschild black hole is not merely a solution, but rather the solution to the

spherically symmetric vacuum Einstein equations, as asserted by Birkhoff’s theorem

[37]4. Therefore, it represents the spherically symmetric spacetime surrounding a

mass, such as the exterior of a static or collapsing non-spinning star.

The Schwarzschild black hole is described by only one parameter, its mass. How-

ever, in the standard picture black holes are capable of also having angular momen-

tum and electric charge. In fact, in more realistic settings, black holes are expected

to have a relevant non-vanishing angular momentum. For GR in the presence of an

3Here we ignored the cosmological term.
4Note however that the situation changes if the cosmological term is considered, where one can
have the Nariai solution [38,39] for example.
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electromagnetic field, described by Eq. (1.8) with

Smatter = −1

4

∫
d4x

√
−gFµνF

µν (1.16)

where Fµν = ∂µAν − ∂νAµ is the Maxwell tensor, the uniqueness theorems (see

e.g. [40] for a review) state that the most general stationary, asymptotically flat,

axially symmetric, regular on and outside the event horizon, black hole solution is

given by the Kerr-Newman metric, which in Boyer-Lindquist coordinates reads [41]

ds2 =− ∆− a2 sin2 θ

ρ2
dt2 − 2a sin2 θ (r2 + a2 −∆)

ρ2
dtdφ

+
(r2 + a2)

2 −∆a2 sin2 θ

ρ
sin2 θdφ2 +

ρ2

∆
dr2 + ρ2dθ2,

(1.17)

where

ρ2 = r2 + a2 cos2 θ, ∆ = r2 − rsr + a2 + r2Q,

a ≡ J/Mc is the total angular momentum J per unit mass, r2Q = kQ2G/c4, with

k the Coulomb’s force constant and Q the electric charge of the black hole. All

other black hole solutions in electrovacuum are limiting cases of the Kerr-Newman

black hole. Namely, when Q = 0 and a ̸= 0 we recover the Kerr black hole, when

a = 0 but Q ̸= 0 we get the Reissner-Nordström black hole, and when Q = a = 0

we recover the Schwarzschild black hole presented before. Generalizations exist in

the presence of a cosmological constant, namely the Kerr-Newman-(anti) de Sitter

black hole. For completeness and later use, we present here the explicit form of the

Reissner-Nordström geometry

ds2 = −
(
1− rs

r
+
r2Q
r2

)
dt2 +

(
1− rs

r
+
r2Q
r2

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (1.18)

From now on we consider only the uncharged case, unless otherwise stated.

In GR, black holes are rather unique objects as they are described merely by three

macroscopic quantities, their mass, angular momentum and electric charge, all of

which can be measured asymptotically through a Gauss law. This fact has lead to

the formulation of the well-known no-hair conjecture (see Ref. [42] for a review),

stating that regardless of the stress-energy content one starts with, gravitational

collapse will necessarily evolve dynamically towards a black hole whose end-state

described only by its mass, electric charge and angular momentum, and no other

quantities commonly denoted as hair.

26



1 Introduction

In 1973 Stephen Hawking, Brandon Carter and James Bardeen published their

seminal work [43] containing four laws of black hole mechanics which can be sum-

marized as follows

• Zeroth law: The surface gravity, κ, is constant on the event horizon of a black

hole.

• First law: The mass difference of any two neighbouring stationary axisymmet-

ric black hole solutions is given by

c2δM =
c2κ

8π
δA+ ΩHδJ, (1.19)

where A is the area of the event horizon, J its angular momentum and ΩH the

angular velocity of the horizon.

• Second law: In any classical process, the area of the black hole event horizon,

A, never decreases.

• Third law: In any physical process it is not possible to reduce the surface

gravity to zero.

If we take the surface gravity and the horizon area to be analogous to the temper-

ature and entropy of a thermodynamic system, then the resemblance to the four

laws of thermodynamics is remarkable. In the following years a set of new ideas

showed that, after all, this analogy was in fact a physical unification. Indeed, Hawk-

ing demonstrated that black holes behave as a thermodynamic system, radiating

thermally with a temperature T proportional to their surface gravity [44]

T =
ℏc
kB

κ

2π
, (1.20)

from which follows that they should have an entropy given by

S =
kBA

4l2pl
, (1.21)

where we have defined the Planck length l2pl = ℏG/c3 and where ℏ and kB are

the Planck and the Boltzmann constants, respectively. The temperature of a black

hole is typically referred to as Hawking temperature and the entropy as Bekenstein-

Hawking entropy [45].
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1.4 Lovelock’s Theorem, Modified Theories of

Gravity and the Gauss-Bonnet Term

1.4.1 Lovelock’s Theorem

Modifying gravity is no easy task. Motivated by the idea of showing the uniqueness

of Einstein’s field equations, Lovelock asked which set of rank-2 tensors Aµν could

satisfy the following three conditions:

(i) Aµν = Aµν(gρσ, gρσ,τ , gρσ,τχ)

(ii) ∇νA
µν = 0

(iii) Aµν = Aνµ .

Any such tensor would provide a plausible candidate for the left-hand side of the field

equations of a geometric theory of gravity, and could be set as being proportional

to the stress-energy tensor T µν . Indeed, this seems to be a formalized version of

the rationale that led Einstein to his formulation of the field equations in 1915,

but here with the explicit aim of finding all possible field equations that would

have consistent conservation and symmetry properties, as well as being free from

Ostrogradski instabilities [46] and higher-derivatives.

The question Lovelock posed had been partially answered much earlier by Weyl

[47] and Cartan [48], who showed that if Aµν is required to be linear in gρσ,τχ then

the only possibility is that Aµν is a linear combination of the Einstein tensor and

a cosmological constant term. By dropping the requirement of linearity, Lovelock

found that there was a considerably broader class of solutions to the problem, each

of which could serve as a suitable left-hand side in a geometric theory of gravity,

without introducing any extra fundamental degrees of freedom beyond those that

exist in the metric [49,50].

Lovelock’s field equations can be derived from the following Lagrangian density:

L =
√
−g

jf∑
j=0

αjRj , where jf =

D−2
2
, D is even

D−1
2
, D is odd

(1.22)

where

Rj ≡ 1

2j
δ
µ1ν1...µjνj
α1β1...αjβj

j∏
i=1

Rαiβi

µiνi
, (1.23)
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and

δ
µ1ν1...µjνj
α1β1...αjβj

≡ j!δµ1

[α1
δν1β1

. . . δµj
αj
δ
νj
βj ]
. (1.24)

The αj are a set of arbitrary constants, and the square brackets denote anti-

symmetrization in the usual way.

The tensor Aµν that satisfies properties (i)-(iii) above can be generated from the

Lagrangian density in Eq. (1.22) by integrating it over a region of D-dimensional

space-time Ω to construct an action S, and then by varying with respect to the

inverse metric gµν . This gives

δS = δ

∫
Ω

dDxL =

∫
Ω

dDx
√
−gAµν δg

µν +

∫
∂Ω

dD−1x
√
hB , (1.25)

where h is the determinant of the induced metric on ∂Ω, and where

Aµ
ν = −

∑
j

αj

2j+1
δ
µρ1σ1...ρjσj

ν α1β1...αjβj

j∏
i=1

Rαiβi

ρiσi
. (1.26)

For further discussion of the derivation of this result, and an expression for the

boundary term B, the reader is referred to the original literature [49,50] and to the

review [51].

One can immediately see that the sum in Eq. (1.26) will terminate as soon as

2j + 1 > D, where D is the dimensionality of space-time. This follows from the

definition of δ
µ1ν1...µjνj
α1β1...αjβj

, as the number of possible values for each index must be

greater than the number of lower indices in order for the quantity to be non-zero

(otherwise at least two indices would have to take the same value, which would

mean that it would vanish on anti-symmetrization). For even dimensional space-

times we therefore have D/2 possible terms appearing in the tensor Aµ
ν , while for

odd dimensional space-times we have (D + 1)/2 possible terms.

This means that in dimensions D = 1 or 2 there is only one term possible in the

Lovelock tensor Aµ
ν , and that this term will be of the functional form ∼ (Riemann)0

(i.e. a constant). In dimensions D = 3 and 4 there are two possible terms, corre-

sponding to a constant and to a term of the form ∼ (Riemann)1. In fact, this latter

term is exactly the Einstein tensor so that in D = 4

Aµ
ν = −1

2
α0δ

µ
ν + α1

(
Rµ

ν −
1

2
δµνR

)
. (1.27)

This is clearly the left-hand side of Einstein’s equations, with the constants expressed

in a slightly less familiar form. As a corollary of Lovelock’s approach to gravity, we
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therefore have that Einstein’s equations are the unique set of field equations that

satisfy conditions (i)-(iii) above, which extends the result found by Weyl and Cartan

to cases where Aµ
ν is allowed to be non-linear in second derivatives of the metric.

While Lovelock’s theorem demonstrates how unique GR is in four spacetime di-

mensions, it does provide direction for searching for modifications to GR in four

dimensions and beyond. Thus, in order to construct gravitational theories whose

field equations differ from those of GR one must relax one or more of the previous

conditions. This leaves us with one of the following options, if we want to consider

alternative theories of gravity: (i) Add extra fields that mediate the gravitational

interaction, beyond just the metric tensor; (ii) Work in a spacetime with dimension-

ality different from four; (iii) Allow field equations with more than two derivatives

of the metric; (iv) Give up on either rank-2 tensor field equations, symmetry of the

field equations under exchange of indices, or divergence-free field equations; or (v)

Give up on locality. Any of these options will in general introduce extra degrees of

freedom in the theory.

1.4.2 Higher-curvature gravity and the Gauss-Bonnet term

The Einstein-Hilbert action in Eq. (1.8) is expected to be the only first in an in-

finite series of higher-curvature terms which become relevant at sufficiently high

energy scales, and therefore should be viewed only as a consistent low-energy ef-

fective field theory (EFT) of some unknown UV-complete theory of gravity [52].

Non-renormalizability of GR is expected to be an artifact of its EFT nature, much

like Fermi’s theory of beta decay, which is able to explain observed phenomena at

energies below the electroweak scale while being non-renormalizable. Of course, we

now know that Fermi’s interaction arises from the (UV-complete) electroweak inter-

action of the Standard Model of particle physics. Higher-curvature terms are then

expected to be present on the gravitational action on general grounds.

Stelle showed long ago that if the classical gravitational action is supplemented

with quadratic curvature terms

S =

∫
d4x

√
−g
[
M2

pl

2
R + c1R

2 + c2RµνR
µν + c3RµναβR

µναβ

]
, (1.28)

then for suitably chosen coefficients c1, c2, and c3, the theory is renormalizable [53].

Unfortunately, renormalizability comes at the price of introducing a ghost degree

of freedom in the theory, rendering it non-unitary. This is a consequence of the

presence of derivatives of order greater than two in the field equations (as asserted by
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Lovelock’s theorem), giving rise to instabilities. However, not all theories of gravity

with higher-curvature terms are inconsistent and unhealthy, as we will discuss next.

Higher-curvature corrections are expected to modify gravitational dynamics in

the strong field regime. One prominent example of such a regime concerns the

very beginning of the Universe and the period of cosmic inflation. Indeed, there

is observational evidence that higher-curvature corrections can induce with success

this initial period of cosmic inflation e.g., within Starobinsky’s model [54] where the

gravitational action is supplemented by a R2 term

S =
M2

pl

2

∫
d4x

√
−g
[
R +

1

6M2
R2

]
. (1.29)

Inflation is realized by the scalar degree of freedom introduced by the R2 term, as can

be seen more explicitly by performing a conformal transformation to the Einstein

frame, where the above action becomes5

S =

∫
d4x
√

−g

[
M2

pl

2
R− 1

2
(∇ϕ)2 − 3

4
M2

plM
2

(
e
−
√

2
3

ϕ
Mpl − 1

)2
]
, (1.30)

and describes Einstein’s gravity minimally coupled to a scalar field with a (suf-

ficiently) flat potential, ideal for an inflationary setting. Starobinsky-like models

of inflation are favored by observations, with cosmic microwave background radia-

tion observations fixing the mass scale M/Mpl ∼ O (10−5) [55]. The action in Eq.

(1.29) is a subset of a broader class of models known as f(R) theories, where f

is a function of the Ricci scalar, which are healthy on general grounds. Another

rather important example of a strong curvature regime concerns black holes, where

higher-curvature terms are expected to affect the nature/existence of singularities,

to change dynamics in the case of sufficiently small masses, and impact on the ge-

ometry in general, hopefully leading to observational consequences that differ from

those predicted by GR. Indeed, later in Chapter 3 we will discuss a case where the

influence of a higher-curvature term on Hawking evaporation of black holes cures

the typical divergent behaviour observed in the late-time evaporation (e.g. as in the

case of a Schwarzschild black hole), leading instead to small black hole relics that

can act as dark matter.

5The overline denotes that quantities are those correspondent to the Einstein frame.
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1.4.2.1 The Gauss-Bonnet term

Higher-curvature terms are also motivated from (more) fundamental principles.

From Lovelock’s theorem, we know that one possible way to modify Einstein’s grav-

ity is to consider higher-dimensions. Indeed, if D > 4, terms of quadratic and

higher-orders in the curvature arise automatically. In particular, in the case D = 5

or 6 the tensor Aµ
ν can contain three terms, with the last being order ∼ (Riemann)2

(i.e corresponding to j = 2 in the sum in Eqs. (1.22) and (1.26)). This gives the

Lagrangian density

L =
√
−g [α0 + α1R + α2G] , (1.31)

where

G = R2 − 4RµνR
µν +RµνρσR

µνρσ (1.32)

is known as the Gauss-Bonnet (GB) term, which will be of central importance for

this work. Extremization of the action associated with this Lagrangian gives the

Lanczos tensor [56,57]:

Aµ
ν =− 1

2
α0δ

µ
ν + α1

(
Rµ

ν −
1

2
δµνR

)
+ α2

(
2RµαρσRναρσ − 4RρσRµ

ρνσ − 4RµρRνρ + 2RRµ
ν −

1

2
δµνG

)
.

(1.33)

This tensor provides an alternative set of field equations from those of Einstein,

which has no higher than second derivatives of the metric, and which obeys the

required symmetry and conservation properties in order for it to be set as being

proportional to the stress-energy tensor T µ
ν .

The additional terms in the second line of Eq. (1.33) can be seen to vanish

identically in D = 4 and lower. This follows from the discussion above, and can

also be understood as resulting from applying dimensionally-dependent identities to

Aµ
ν [58]. However, the same result can also be seen to be a consequence of Chern’s

theorem [59] applied to the action that results from integrating Eq. (1.31) over the

space-time manifold. In this latter case the integral of the Gauss-Bonnet term is

equal to a constant with a value that depends on the Euler characteristic of the

manifold χ,

χ =
1

32π2

∫
d4x

√
−gG, (1.34)

and which upon extremization contributes precisely zero to Aµ
ν . It is for this reason

that the Gauss-Bonnet term in D = 4 is often referred to as a “topological term”,

and neglected. This is despite the fact that generically G ≠ 0 in D = 4.
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In dimensions D > 6 there are further terms available in the Lovelock’s theory,

with the order of non-trivial new terms in powers of the Riemann tensor increasing

consistently as the dimensionality of space-time increases. We will not consider

these further possible terms here, but rather restrict ourselves to the Lagrangian

that contains the Gauss-Bonnet term (1.31). Besides being the unique quadratic

curvature combination appearing in the Lovelock Lagrangian, Gauss-Bonnet terms

are of wide theoretical interest, as we will now describe.

The combination of Einstein-Hilbert and Gauss-Bonnet terms in the gravitational

action result in theories that have come to be known as Einstein-Gauss-Bonnet

gravity. Such theories are of interest partly because string theory predicts that at the

classical level Einstein’s equations are subject to next-to-leading-order corrections

that are typically described by higher-order curvature terms in the action. As we

have just seen, the Gauss-Bonnet term is the unique term that is quadratic in the

curvature and that results in second-order field equations.

As an example of how Einstein-Gauss-Bonnet gravity arises, it can be shown that

M-theory compactified on a Calabi-Yau three-fold down to D = 5 takes the effective

form [60,61]

S =

∫
d5x

√
−g
(
R +

1

16
c
(I)
2 VI G

)
, (1.35)

where c
(I)
2 VI depends on the details of the Calabi-Yau manifold. This is nothing but

the five-dimensional Lovelock theory presented in Eq. (1.31) (with suitably chosen

αi). Gauss-Bonnet terms also occur in heterotic string theory [62–66], where the

1-loop effective action in the Einstein frame displays couplings of the form6

S =
M2

pl

2

∫
d4x

√
−g
[
R− (∇ϕ)2 + α′

8
e−γϕG + . . .

]
, (1.36)

in the four-dimensional theory (where ϕ is a dynamical scalar field: the dilaton), α′

is the (square) string length, and other higher-derivative terms are denoted by the

ellipsis.

The mathematical foundations of theories containing both Einstein and Gauss-

Bonnet terms have been extensively studied, with Choquet-Bruhat herself address-

ing the associated Cauchy problem [67], and the Hamiltonian problem being pre-

sented in Ref. [68]. Cosmological models have been particularly well studied in these

theories, including during inflation, and in the context of “brane” cosmology (see

Ref. [69] for a review). They have also found application in the study of black hole

6In particular, γ = 1√
2
is motivated from heterotic string theory.
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thermodynamics and in the emergent gravity paradigm (see Ref. [51] for a review).

The reader will note, however, that the dimensionality of the manifold over which

the integration is performed in the action in Eq. (1.35) must necessarily be D > 4,

in order for there to be non-vanishing contributions to the field equations.

The appearance of Gauss-Bonnet terms in string-inspired theories of gravity, such

as the one in Eq. (1.36), has also motivated the consideration of four-dimensional

theories of the form

S =
M2

pl

2

∫
d4x

√
−g
[
R− (∇ϕ)2 + α

8
f(ϕ)G

]
, (1.37)

where α is a (generic) coupling constant with dimensions of (length)2. In these

theories it is possible to work in D = 4 space-time dimensions, and still have non-

vanishing second-order contributions of the Gauss-Bonnet term to the field equa-

tions, due to the existence of the scalar field ϕ (and its non-minimal coupling).

These scalar-tensor variants of Einstein-Gauss-Bonnet theory are also well studied,

and have been found to exhibit a rich phenomenology [70–94]. In particular, they

are expected to produce viable models of inflation in the early universe, display

spontaneous scalarization in compact objects, and admit novel black hole solutions

that evade the no-hair theorems.

1.4.2.2 Horndeski gravity

Scalar fields have been widely considered in recent years in modified theories of

gravity for a variety of reasons. Indeed, they can, depending on the setting, be

suitable dark matter and/or dark energy candidates, and are the simplest type

of fields to consider. They are also motivated from fundamental arguments, e.g.,

they arise in four-dimensional effective theories of gravity from string theory, as we

have seen above, or within the framework of non-commutative geometry quantum

theories of gravity [95,96]. Quantum chromodynamics further predicts the existence

of pseudoscalar fields that go by the name of axions. In particular, axions provide

a solution to the strong CP problem [97] and are viable dark matter candidates, as

their interaction with the other particles of the Standard Model of particle physics

can be highly suppressed. Cosmological inflation is also typically modeled as a

slowly-rolling scalar field on a potential, such as in Starobinsky’s model presented

in Eq. (1.30). Scalar fields further raise the possibility that modifications of gravity

occur only in certain regimes, without altering predictions e.g. in solar system scales

where GR is well-tested. This is achieved through screening mechanisms [98–102],
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producing non-trivial effects in sparse cosmic environments, or through spontaneous

scalarization [74–76,103], altering only the strong field regime (e.g. near black holes

or neutron stars). Spontaneously scalarized compact objects are endowed with scalar

charges, which can leave imprints in gravitational wave observations.

The recently revived Horndeski class of theories [104] (see Ref. [105] for a review)

defines the most general four-dimensional scalar-tensor theory with second-order

equations of motion, and is described by the Lagrangian density

LH√
−g

= G2(ϕ,X)−G3(ϕ,X)□ϕ+G4(ϕ,X)R +G4X

[
(□ϕ)2 − (∇µ∇νϕ)

2]
+G5(ϕ,X)Gµν∇µ∇νϕ− G5X

6

[
(□ϕ)3 − 3□ϕ (∇µ∇νϕ)

2 + 2 (∇µ∇νϕ)
3] ,

where X = −1
2
(∇ϕ)2 is the canonical kinetic term of the scalar ϕ, GiX ≡ ∂XGi, and

we have used the shorthanded forms (∇µ∇νϕ)
2 = ∇µ∇νϕ∇µ∇νϕ, and (∇µ∇νϕ)

3 =

∇µ∇νϕ∇ν∇λϕ∇λ∇µϕ. The theory contains four arbitrary functions of ϕ and X,

G2, G3, G4, and G5.

The scalar-tensor theories presented in Eq. (1.37) belong to the Horndeski class.

In fact, it can be shown that the non-minimal coupling f(ϕ)G in Eq. (1.37) can be

reproduced in the Horndeski formalism by taking [106] (see also Refs. [107–109])

G2 = 8X2(3− logX)∂4ϕf,

G3 = 4X(7− 3 logX)∂3ϕf,

G4 = 4X(2− logX)∂2ϕf,

G5 = −4 (logX) ∂ϕf.

(1.38)

We remark that when it comes to purely geometric terms, only couplings of the

scalar field to the Ricci scalar and the Gauss-Bonnet term are allowed by Horndeski’s

theory.

1.4.3 Novel Einstein-Gauss-Bonnet gravity in four

dimensions

The ideas presented in this section are the subject of much research presented in

this thesis.

In order to circumvent the stringent requirements of Lovelock’s theory, and in an

attempt to introduce the Gauss-Bonnet term in 4D gravity directly, Glavan & Lin
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proposed rescaling the coupling constant α2 such that [110]

α2 →
α2

(D − 4)
. (1.39)

This quantity is clearly divergent in the limit D → 4, but Glavan & Lin made the

non-trivial suggestion that if this re-scaling were introduced into the Lanczos tensor

(1.33) then the terms that contain this quantity as a factor might remain finite

and non-zero. That is, they postulated that the divergence they introduced into α2

might be sufficient to cancel out the fact that additional terms in Eq. (1.33) tend to

zero as D → 4. If this were the case, then the Gauss-Bonnet term would be allowed

to have a direct effect in the 4D theory of gravity.

Motivation for this radical new approach came from the trace of the Lanczos

tensor (1.33), which in D dimensions gives

Aµ
µ = −1

2
Dα0 −

1

2
(D − 2)α1R− 1

2
(D − 4)α2G . (1.40)

The vanishing of the term from the Einstein tensor in D = 2 and the vanishing

of the Gauss-Bonnet contribution in D = 4 are both made explicit here, and both

can be seen to be due to a pre-factor of the form (D − n) (recall that R and G
can be non-zero only if D > 1 and D > 3, respectively). Using the re-scaling in

Eq. (1.39) can then be seen to entirely remove the factor that usually results in the

contribution from the Gauss-Bonnet term vanishing, and leaves a term that can in

general be non-zero in the limit D → 4.

The additional term that results in the trace of the field equations (1.40), after

the re-scaling given in Eq. (1.39), are strongly motivated from studying quantum

corrections to the stress-energy tensor in the presence of gravity. In this case the

renormalized vacuum expectation value for the trace of Tµν includes terms that

are proportional to G [111], in just the same way that they are found in the trace

of the left-hand side of the field equations in Eq. (1.40). This is known as the

“conformal” or “trace” anomaly in the quantum field theory literature, and a natural

interpretation of the Glavan & Lin re-scaling is that it is a way of accounting for

the conformal anomaly in the gravitational sector of the theory. The reader may

also note that a similar procedure to the re-scaling (1.39) has also been successfully

applied to the Einstein term in the limitD → 2 [112], in order to remove the factor of

(D− 2) that would otherwise result from Einstein’s equations being entirely absent.

We will return to this particular point later on.

There has been a flurry of activity surrounding the idea of 4D-Einstein-Gauss-
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Bonnet Gravity (4DEGB) in the years since it was published in Physical Review

Letters back in 2020 [1–6, 112–279]. It is the re-scaling presented in Eq. (1.39),

and the ideas, phenomenology and theories that have resulted from it, that are the

subject of much research presented in this thesis. In particular, we aim to present a

balanced guide to the ways in which the proposed re-scaling (1.39) can be considered

a viable method of introducing the consequences of a Gauss-Bonnet term in 4D, as

well as those in which it cannot, and its phenomenological consequences. We will

draw on the work of many authors for this presentation, who will be referenced as

we proceed, while focusing on the original contributions by the author of this thesis.

1.5 Outline

Having motivated the need for the study of modified theories of gravity, higher-

curvature corrections (in particular, Gauss-Bonnet terms), and new scalar gravita-

tional degrees of freedom, we now proceed to outline our structure. As previously

mentioned, this thesis is based on the original works by the author in Refs. [1–8].

In chapter 2 we review and discuss in more detail the divergent rescaling in Eq.

(1.39) proposed by Glavan & Lin, and discuss the concerns and criticisms that

have been raised about this idea. Then, we propose a method to consistently reg-

ularize the 4D-Einstein-Gauss-Bonnet action by the introduction of counter-terms

that remove the otherwise occurring divergences, resulting in a well-defined four-

dimensional scalar-tensor theory that possesses many of the properties that the

original proposal by Glavan & Lin possesses. We close with a discussion on other

possible regularization procedures resulting in well-defined 4DEGB theories. This

chapter is based on the ideas of Ref. [2].

Chapter 3 concerns the phenomenology of 4D-Einstein-Gauss-Bonnet theories,

both in the Glavan & Lin proposal, and in the well-defined regularized theories

discussed in chapter 2. In particular, we discuss the black hole solutions of the

theory, including solutions with a cosmological constant and electric charge (based

on the results of Ref. [1]), and their thermodynamics. Later, based on the results

of Ref. [5], these black hole solutions are discussed in more detail for the well-

defined regularized theories. A uniqueness theorem for solutions is obtained, and the

possibility that Hawking evaporation remnants constitute dark matter is discussed.

We finish with a discussion on the cosmologies allowed by the different versions of

4DEGB theories.

In chapter 4 we are interested in confronting the regularized 4DEGB theory ob-
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tained in chapter 2 with observations, based on Ref. [3]. We obtain its weak-field

limit, and later constraint the coupling constant of the theory taking into account

many observations and experimental results in a wide variety of settings.

In chapter 5 the well-known theory of gravity with a conformally coupled scalar

field is generalized while maintaining all its symmetries and equations of motion at

second order. This is achieved by imposing conformal symmetry on the equation

of motion for the scalar field. This generalization includes a Gauss-Bonnet sector

which is shown to be intimately connected with the well-defined regularized 4DEGB

theories discussed in the previous chapters. Black holes and the cosmologies of the

generalized conformal scalar field theory are discussed. These results are based on

Ref. [4].

Chapter 6 discusses a framework that is applicable to many modified theories of

gravity, rather than exploring one specific modified gravity theory example. In par-

ticular, it discusses how pseudospectral methods can be used to solve the stationary

and axisymmetric field equations of modified theories of gravity in order to obtain

highly-accurate numerical solutions of spinning black holes. We start by introducing

the framework of spectral methods and then move on to discuss their applications to

black hole physics. We discuss on a particular code implementation of the described

methods, benchmarking the code against the well-known Kerr solution, obtaining re-

markable agreement and small numerical error. Finally, as an example to how these

methods can be used outside GR, we use our machinery to obtain spinning black

holes in a set of scalar-Gauss-Bonnet modified theories, obtaining highly-accurate

solutions. These results are based on Ref. [8] which is yet to appear.

Then, in chapter 7 we address the issue of the small mass limit of black holes in

more standard scalar-Gauss-Bonnet theories. In these theories, black holes cease to

exist below a certain mass, with their endpoint in light of Hawking evaporation being

uncertain. Our aim is to investigate self-consistency and observational constraints

imposed in these theories and their coupling dependence. We use analytical and

numerical techniques in both the static and spinning black hole cases to perform

these studies. The results of this chapter are based on Ref. [7].

We conclude and point towards future research directions in chapter 8.
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2 Einstein-Gauss-Bonnet Gravity

in Four Dimensions

In this section we will discuss in more detail the proposal of Glavan & Lin to re-

scale the coupling constant of the Gauss-Bonnet term [110], before discussing the

concerns and criticisms that have been raised about this idea, and the theories that

have resulted from it.

2.1 Glavan & Lin’s theory and solutions

The presentation here closely follows that of Ref. [110]. Let us start by considering

the typical Einstein-Gauss-Bonnet action, where for the moment we neglect any

contributions from matter fields, focusing on the purely gravitational sector

S =
1

16πG

∫
dDx

√
−g (−2Λ +R + α̂G) , (2.1)

where α̂ is a constant. The reader will note that the number of space-time dimensions

D is not yet specified. Varying and extremizing the action with respect to the metric

results in the field equations of the theory, which read

Gµν + Λ gµν = α̂ Hµν , (2.2)

where

Hµν = 15δµ[νR
ρσ

ρσR
αβ

αβ]

= −2

(
RRµν − 2RµανβR

αβ +RµαβσR
αβσ
ν − 2RµαR

α
ν − 1

4
gµνG

)
.

(2.3)

The right-hand side of this equation is anti-symmetrized over five indices, and so

must vanish in dimensions D < 5. Up until this point, the presentation has been

that of the usual Einstein-Gauss-Bonnet theory. The novelty added in Ref. [110] is

the possibility that the vanishing of Hµν in four dimensions might be cancelled by
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re-scaling the coupling constant of the Gauss-Bonnet term, such that

α̂ =
α

D − 4
, (2.4)

for some new finite coupling constant α as we take the limit D → 4. That this

might be a viable possibility is suggested by the trace of the field equations (2.2),

which contains a contribution from the Gauss-Bonnet term that takes the form

gµνHµν =
1

2
(D − 4)G . (2.5)

It is clear that in this case the multiplicative factor of (D − 4) would be precisely

cancelled by the suggested re-scaling of α̂, which would leave a non-vanishing con-

tribution to the trace of the field equations as D → 4:

α̂gµνHµν =
α

�����(D − 4)

1

2
�����(D − 4)G =

α

2
G. (2.6)

The authors of Ref. [110] suggest that this non-vanishing contribution may not be

exclusive to the trace of the field equations, but could be manifest in the full theory.

To support this claim they note that one can observe that the field equations written

in differential form are

εaD =

D/2−1∑
p=0

αp (D−2p) ϵa1...aDR
a1,a2 ∧ ... ∧Ra2p−1,a2p ∧ ea2p+1 ∧ ... ∧ eaD−1 = 0, (2.7)

where ea is the vielbein. It may be noted here that the (D − 4) factor emerges in

the field equations in this case, as p = 2 for the Gauss-Bonnet contribution. While

this is an intriguing suggestion, it appears that the desired result does not follow

quite so straightforwardly, as we will discuss below. Nevertheless, there do exist

D-dimensional space-times, which in the limit D → 4 are well-behaved under the

proposed re-scaling.

Let us now focus on three important examples of physically interestingD-dimensional

spacetimes: the maximally-symmetric, spherically-symmetric, and the homogeneous

and isotropic FLRW spacetimes. Starting with the maximally-symmetric spacetime,

we have

Rµανβ =
R

D(D − 1)
(gµνgαβ − gµβgαν) , (2.8)
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with the Ricci scalar R being constant. From this, one can prove that

Hµν =
(D − 4)(D − 3)(D − 2)

2D2(D − 1)
gµνR

2, (2.9)

thus resulting in the following non-trivial contribution to the field equations under

the singular re-scaling of Eq. (2.4):

lim
D→4

α̂Hµν = lim
D→4

α

�����(D − 4)
�����(D − 4)(D − 3)(D − 2)

2D2(D − 1)
gµνR

2 =
α

48
gµνR

2. (2.10)

Under these conditions, there are two branches of solutions of the field equations

(2.2) where the constant Ricci scalar acts as an effective cosmological constant, Λeff ,

which obeys

Λ±
eff = − 6

α

(
1±

√
1 +

4αΛ

3

)
. (2.11)

The existence of two branches of solutions is well-known in the higher-dimensional

Einstein-Gauss-Bonnet theory (see e.g. [280]) and remains a feature of 4D EGB that

will accompany us throughout this work.

The two branches found above are fundamentally different. Assuming the Gauss-

Bonnet contribution is a small correction to the theory, such that α ≪ 1, one obtains

from the positive branch that

Λ+
effα ≈ −12− 4Λα +O

(
α2
)
, (2.12)

while the negative branch gives

Λ−
effα ≈ 4Λα +O

(
α2
)
. (2.13)

Clearly the positive branch does not possess a well-defined limit as α vanishes,

whereas in the negative branch we recover the dynamics of GR. For this reason, the

positive branch is dubbed the Gauss-Bonnet branch, and the negative one the GR

branch.

At the level of perturbation theory, we perturb the metric as

gµν = gµν + hµν , (2.14)

around the maximally symmetric space-time gµν . The linear perturbations in D = 4
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are then described by (see e.g. [281] for details)(
1 +

4αΛ

3

)[
∇ρ∇µhνρ +∇ν∇ρh

µρ −□hµν −∇µ∇νh
ρ
ρ

+ δµν

(
□hρρ −∇ρ∇σh

ρσ
)
+ Λ

(
δµνh

ρ
ρ − 2hµν

)]
= 0 ,

(2.15)

where the correction from the Gauss-Bonnet term can be observed to amount to

an overall factor in the equation of motion, while the term in brackets is the same

as in GR. Thus, just as in GR, the graviton has two degrees of freedom and the

Gauss-Bonnet contribution to the linearized dynamics is trivial.

The same procedure can be performed for an FLRW background

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2dΩD−2

)
, (2.16)

where a(t) is the scale factor and dΩD−2 the metric on the D− 2-sphere. We define,

again, the Hubble rate as H = ȧ/a and supplement the 4D EGB theory with matter

in the form of a perfect fluid with stress-energy tensor T µ
ν = diag{−ρ, p, p, p, . . .},

where ρ and p are the energy density and pressure of the matter fields. Under these

conditions, the following set of (modified) Friedmann equations can be obtained

H2 +
k

a2
+ α

(
H2 +

k

a2

)2

=
8πG

3
ρ+

Λ

3
,

Ḣ = − 4πG(ρ+ p)

1 + 2α
(
H2 + k

a2

) + k

a2
,

(2.17)

while the matter fields obey the standard continuity equation ρ̇ + 3H (ρ+ p) =

0. Interestingly, these Friedmann equations have exactly the same form as the

ones obtained in holographic cosmology [282,283], from the generalized uncertainty

principle [284], by considering quantum entropic corrections [285], and from gravity

with a conformal anomaly [286]. Moreover, they are equivalent to the ones resulting

from the following set of field equations

Gµν + Λgµν + α

(
RρµσνR

ρσ − 1

12
gµνR

2

)
= 8πGTµν . (2.18)

The tensor in brackets on the left-hand-side has long been known to be covariantly

conserved in conformally flat spacetimes on its own (it is sometimes called acciden-

tally conserved) [287–289], and appears naturally in the renormalized stress-energy

tensor of matter fields in curved-spacetime [289]. In the next section we will provide
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an explanation as to why the modified Friedmann equations of 4DEGB and those

arising from the set of field equations presented in Eq. (2.18) are equivalent.

If we now consider transverse and traceless parts of the metric fluctuations, which

describe gravitational waves, by perturbing as

gij = a2(δij + γij), (2.19)

where ∂iγij = 0 and γii = 0, then we obtain in the four-dimensional limit a well-

defined equation of motion, as the (D − 4) factors once again cancel. This gives

γ̈ij +

(
3 +

4αḢ

1 + 2αH2

)
Hγ̇ij − c2s

∂2γij
a2

= 0, where c2s = 1 +
4αḢ

1 + 2αH2
.

(2.20)

We observe that the Gauss-Bonnet contribution alters the Hubble friction and the

sound speed, potentially leading to some non-trivial observational effects, which

should be expected to be especially relevant in the early Universe.

Employing a general static and spherically-symmetric line-element, of the form

ds2 = −f(r)e−2δ(r)dt2 +
dr2

f(r)
+ r2dΩD−2 , (2.21)

where dΩD−2 is the metric on the D−2 sphere, the field equations reveal, once again,

an overall (D − 4) factor, leading to the following solution in the limit D → 4:

f(r) = 1 +
r2

2α

(
1±

√
1 +

8GMα

r3

)
, and δ(r) = 0 . (2.22)

This solution is interesting for several reasons. First, it is highly reminiscent of

the Boulware-Deser black hole from the higher-dimensional Einstein-Gauss-Bonnet

theory [280], which reads

f(r) = 1 +
r2

2α(D − 3)(D − 4)

(
1±

√
1 +

8GMα(D − 3)(D − 4)

rD−1

)
, (2.23)

and which also has δ(r) = 0. Second, these 4D EGB black hole solutions are exactly

the same as solutions that appear in other contexts, namely by considering gravity

with a conformal anomaly [290, 291], entropy corrections to the black hole entropy

[292] and more interestingly as a solution to the proposed UV completion of gravity,

Hořava-Lifshitz gravity [293], known as the Kehagias-Sfetsos spacetime [294]. We
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will discuss this black hole solution in more detail in future sections.

2.1.1 Concerns and shortcomings

As alluded to above, the novel approach of Glavan & Lin has been met with a

healthy amount of skeptical scrutiny [222–230]. Here we discuss these criticisms,

and present the arguments they involve.

Let us begin with Refs. [222–225], which have shown that the tensor resulting

from the variation of the Gauss-Bonnet term, Hµν given in Eq. (2.3), can be written

in D dimensions in terms of the Weyl tensor as

Hµν = 2
(
H(1)

µν +H(2)
µν

)
, (2.24)

where

H(1)
µν = CµαβσC

αβσ
ν − 1

4
gµνCαβσρC

αβσρ , (2.25)

and

H(2)
µν =

(D − 4) (D − 3)

(D − 2) (D − 1)

[
− 2 (D − 1)

(D − 3)
CµρνσR

ρσ − 2 (D − 1)

(D − 2)
RµρR

ρ
ν +

D

(D − 2)
RµνR

+
1

(D − 2)
gµν

(
(D − 1)RρσR

ρσ − D + 2

4
R2

)]
,

(2.26)

and where here the D-dimensional expression for the Weyl tensor should be under-

stood to be taken as

Cµανβ = Rµανβ −
2

D − 2

(
gµ[νRβ]α − gα[νRβ]µ

)
+

2

(D − 1) (D − 2)
Rgµ[νgβ]α . (2.27)

Now, while it is the case that in the limit D → 4 the term α̂H
(2)
µν is well-defined,

such that

lim
D→4

H
(2)
µν

(D − 4)
= −CµρνσR

ρσ − 1

2
RµρR

ρ
ν +

1

3
RµνR +

1

4
gµν

(
RρσR

ρσ − 1

2
R2

)
=

1

2

(
−3Cµρνσ +Rµρνσ −

1

12
gµνgρσR

)
Rρσ

(2.28)

the same limit of α̂H
(1)
µν is not. That is because H

(1)
µν vanishes identically in four

dimensions, as the Riemann tensor loses independent components as one lowers the

space-time dimension (a result analogous to Gµν = 0 in 2 dimensions). The poor be-

haviour of α̂H
(1)
µν in the 4-dimensional limit is problematic, but if one were to simply
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ignore the above contribution to the field equations, the finite part resulting from

the Gauss-Bonnet term would not be covariantly conserved, which would clearly be

unacceptable. Note however, that if we consider a conformally flat spacetime (such

as the FLRW metric, for which the Weyl tensor vanishes identically), and neglect

all the Weyl terms even in the 4D limit, then Hµν is equivalent to the accidentally

conserved tensor presented in Eq. (2.18).

Revisiting the arguments that employ the first-order formalism outlined in Eq.

(2.7), Refs. [222–225] argue that one cannot simply re-scale the coupling constant

and take the four-dimensional limit. To see why, one can re-cast Eq. (2.7) in terms

of space-time indices and take the Hodge dual of the (D − 1)-form obtaining (see

Ref. [222] for details)

ενα = 2 (D − 4)!Hνα = 0, (2.29)

where Hνα is the Gauss-Bonnet tensor defined in Eq. (2.3). The pre-factor here

no longer vanishes when D = 4, and the result is therefore that this approach

does not lead to a well-defined (D − 4) factor in front of the field equations in the

metric formulation. Again, this is obviously problematic for the proposed re-scaling

procedure.

At the level of perturbation theory the Glavan & Lin approach also seems ill-

defined. Although at first-order there are no divergences, as observed in Eq. (2.15),

the same cannot be said about second-order perturbations. Around a Minkowski

background these obey [224,225]

0 =
[
GR terms of O

(
h2
)]

+
α

(D − 4)

[
− 2∇γ∇αhνβ∇γ∇βhµ

α + 2∇γ∇βhνα∇γ∇βhµ
α

+ 2∇γ∇βhν
α∇µ∇αhβγ + 2∇γ∇βhµ

α∇ν∇αhβγ − 2∇γ∇βhµ
α∇ν∇βhαγ

− 2∇γ∇βhν
α∇µ∇βhαγ − 2∇µ∇γhαβ∇ν∇βhαγ + 2∇µ∇γhαβ∇ν∇γhαβ

+ ηµν
(
2∇δ∇βhαγ∇δ∇γhαβ −∇δ∇γhαβ∇δ∇γhαβ −∇β∇αhγδ∇δ∇γhαβ

)]
,

(2.30)

which can be seen to be ill-defined in the four-dimensional limit.

A hint that the original approach outlined by Glavan & Lin may be an incom-

plete description of a more complicated theory is given by an analysis of tree-level

scattering amplitudes. These reveal that, albeit being different to those of GR, the

ones obtained from the four-dimensional limit of the Glavan & Lin approach are

not new. Instead, they all come from certain scalar-tensor theories, indicating the

likely presence of a scalar degree of freedom, in addition to the two tensor degrees
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of freedom in the graviton [226]. Moreover, the on-shell action can be observed to

contain divergences [228], and the field equations cannot be variationally completed

in D = 4, as the Lagrangian diverges [229].

Given the concerns discussed above, alternative regularizations have been sought

for a well-defined version of the Einstein-Gauss-Bonnet theory in four-dimensions.

These have resulted in novel scalar-tensor theories either via a counter-term regu-

larization [2,258] (first applied in Ref. [112] in two-dimensions), or via a regularized

Kaluza-Klein reduction [256, 257]. Yet another regularization method focuses on

temporal diffeomorphism breaking, instead of the inclusion of a scalar degree of

freedom [259]. Here we will discuss in detail the counter-term regularization, first

performed in Ref. [2], and briefly review each of the other approaches in the follow-

ing sections. In all cases Lovelock’s theorem is respected, contrary to the aim of

Glavan & Lin.

2.2 Derivation of Regularized Field Equations for

the Einstein-Gauss-Bonnet Theory in Four

Dimensions

In this section, based on Ref. [2], we investigate a method of regularizing the 4DEGB

theory, in order to produce an action and set of field equations which are well-defined

in the limit D → 4, and which can be written in closed form. Our method does

not rely on the embedding or compactification of any higher-dimensional spaces, and

results in a theory of gravity in which an extra scalar gravitational degree of freedom

is made explicit. All solutions of the original 4DEGB theory published in [110] are

also found to be solutions of our new formulation of the theory.

2.2.1 Regularization of the Ricci scalar in 2D

The regularization procedure we wish to employ has already been successfully ap-

plied in two space-time dimensions, in order to construct an action for Einstein’s

equations, and we will use this section of our chapter to outline its application in

this case. We intend this to be an instructional demonstration of the methodology

that will also be used in the four dimensional case in Section 2.2.2, to regularize the

4DEGB theory. This section closely follows the presentation used in Reference [112].

Two-dimensional theories of gravity are known to be simpler than their four-

dimensional counterparts, but nevertheless have been shown to admit rich and in-
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teresting structures (such as e.g. black holes and cosmologies). Their simplicity also

makes them a useful tool for the study of quantum gravity, which can be realised

in this case [295]. However, while it is possible to write down a consistent set of

field equations, it is more problematic to write down an action from which the field

equations can be derived. This is because in two dimensions the Einstein-Hilbert

term has topological character, much like the Gauss-Bonnet term has in four dimen-

sions, which has led to the construction of a number of gravitational theories (see,

e.g., [296] for a review on two-dimensional gravity).

A development in two-dimensional theories of gravity, which is useful for our

present study, is the development of a regularization procedure that introduces a

divergence in the gravitational coupling parameter when D → 2, and then cancels it

out by adding a counter term to the action [112]. In this case we start by considering

the following action in D dimensions:

S =
α

(D − 2)

∫
dDx

√
−gR + SM , (2.31)

where a re-scaling of the coupling constant has been introduced in order to try and

cancel the vanishing contribution that R gives to the field equations in D = 2. This

causes the action to become divergent, and of course is highly reminiscent of the

procedure introduced in the 4DEGB proposal. Now, if one were to insist on going

down the Glavan & Lin route (i.e. varying the action, obtaining the equations of

motion, and then taking the 2D limit), one would stumble upon similar problems

as in the previously discussed four-dimensional case. This is because the Einstein-

tensor is identically zero in two dimensions, and so the limit

lim
D→2

(
α

Gµν

(D − 2)
− Tµν

)
, (2.32)

is not well-defined. Note, however, that the trace of the field equations

lim
D→2

gµν
(
α

Gµν

(D − 2)
− Tµν

)
= −1

2
(αR− 2T ) = 0, (2.33)

is well-defined, just as in the case of 4D EGB. One can attempt to solve this inde-

terminacy of the field equations by adding a counter-term to the action, in order

to cancel the resulting ill-defined terms. This can be done in the present case by
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adding to the action (2.31) the term [112]

− α

(D − 2)

∫
dDx

√
−g̃R̃ , (2.34)

where the tilde denotes a quantity constructed from the conformal geometry defined

by

g̃µν = e2ϕgµν . (2.35)

One may note that in D dimensions the square root of the determinant of the metric

is related to its conformal counterpart by
√
−g̃ = eDϕ

√
−g, and that the Ricci scalar

of the conformal metric can be specified as [297,298]√
−g̃R̃ =

√
−ge(D−2)ϕ

[
R− 2(D − 1)□ϕ− (D − 1)(D − 2) (∇ϕ)2

]
. (2.36)

Substituting this all into the action produces the result

S =
α

(D − 2)

∫
dDx

[√
−gR−

√
−g̃R̃

]
+ SM

=
α

(D − 2)

∫
dDx

√
−g
[
2 (D − 1)□ϕ+ (D − 1) (D − 2) (∇ϕ)2

− (D − 2)ϕR + 2 (D − 2) (D − 1)ϕ□ϕ

]
+ SM ,

(2.37)

where we have expanded the exponential around D = 2 and discarded terms of order

O((D − 2)2) or higher. After performing an integration by parts, and discarding

boundary terms, we find that the divergent factor is canceled, allowing us to take

the two-dimensional limit

S = − α

�����(D − 2)

∫
dDx

√
−g�����(D − 2)

(
ϕR + (D − 1) (∇ϕ)2

)
+ SM

→ −α
∫
d2x

√
−g
(
ϕR + (∇ϕ)2

)
+ SM .

(2.38)

This action has field equations

R̃ = 0, (2.39)

which follows from varying with respect to the scalar field, and is equivalent to

R− 2□ϕ = 0 , (2.40)
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and from the metric variation

∇µϕ∇νϕ−∇µ∇νϕ+ gµν

(
□ϕ− 1

2
(∇ϕ)2

)
=

1

α
Tµν , (2.41)

where the stress-energy tensor obeys the conservation equation ∇µTµν = 0. Of

particularly interest in this case is that a suitable combination of the scalar field

equation (2.40) and the trace of the field equations (2.41),

□ϕ =
1

α
T , (2.42)

completely decouples from the scalar field resulting in

αR = 2T , (2.43)

where T = T µ
µ, thus having the same trace equation as Eq. (2.33). Note that in two

dimensions there is only a single degree of freedom in the geometry, which means

that Eq. (2.43) contains all the information about the theory.

These field equations are particularly interesting as it can be seen that Equation

(2.39) is equivalent to the vanishing of the Ricci curvature of the conformal geometry,

and also that the classical evolution of the gravity-matter system is independent of

ϕ (although the converse is not true).

The theory with field equation (2.43) is sometimes dubbed “R = T” gravity, and

has been studied in much detail in the literature [299–303]. We remark that the

regularized theory of [112] admits exactly the same solutions as R = T gravity in

2D [135, 227, 304], but that it also admits a finite and well-defined action. In the

next section we will deploy a similar procedure to regularize the 4DEGB theory, in

which we will obtain similar results.

2.2.2 Regularization of the Gauss-Bonnet term in 4D

In this section we apply the ideas from the discussion above to the four-dimensional

case with a Gauss-Bonnet term. We start by considering the (divergent) Einstein-

Gauss-Bonnet action in D dimensions

S =

∫
dDx

√
−g
(
R +

α

(D − 4)
G
)
, (2.44)
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to which we add the counter-term

− α

(D − 4)

∫
dDx

√
−g̃G̃ , (2.45)

where again the tilde denotes quantities constructed from a conformal geometry as

in Eq. (2.35). Our reasoning to choose this particular counter-term to regularize the

action was the following. First, an analogous procedure was applied with success

in 2D as we have reviewed, suggesting that a regularized four-dimensional theory

might be obtained with success as well. Now, if we take a look at Eq. (2.24), we

observe that the problematic terms as we take the regularized four-dimensional limit

are the ones composed only of the Weyl tensor, therefore possessing a conformally

invariant character. By subtracting a conformal Gauss-Bonnet term, upon variation

we are effectively canceling these conformally invariant problematic terms, leaving

us only with terms proportional to a (D− 4) factor. This fact will be manifest even

at the level of the action, as we will see next.

We can write the Gauss-Bonnet term of the conformal metric in terms of the

original one as [297,298]√
−g̃G̃ =

√
−ge(D−4)ϕ [G − 8(D − 3)Rµν (∇µϕ∇νϕ−∇µ∇νϕ) − 2(D − 3)(D − 4)R (∇ϕ)2

+ 4(D − 2)(D − 3)2□ϕ (∇ϕ)2 − 4(D − 2)(D − 3) (∇µ∇νϕ) (∇µ∇νϕ)

+ 4(D − 2)(D − 3) (□ϕ)2 + 8(D − 2)(D − 3) (∇µϕ∇νϕ) (∇µ∇νϕ)

− 4(D − 3)R□ϕ +(D − 1)(D − 2)(D − 3)(D − 4)(∇ϕ)4
]
.

(2.46)

Expanding the exponential around D = 4, and neglecting terms of order (D − 4)2

or higher, we then obtain√
−g̃G̃ =

√
−g
(
G − 4(D − 3)R□ϕ+ 4(D − 3)2(D − 2)□ϕ (∇ϕ)2 + 4(D − 3)(D − 2)(□ϕ)2

− 8(D − 3)Rµν(∇µϕ∇νϕ−∇µ∇νϕ) + 8(D − 3)(D − 2)∇µϕ∇νϕ∇µ∇νϕ

− 4(D − 3)(D − 2)(∇µ∇νϕ)(∇µ∇νϕ) + (D − 4)
[
ϕG − 2(D − 3)R (∇ϕ)2

+ (D − 3)(D − 2)(D − 1)(∇ϕ)4 − 4(D − 3)ϕR□ϕ+ 4(D − 3)2(D − 2)ϕ□ϕ (∇ϕ)2

+ 4(D − 3)(D − 2)ϕ(□ϕ)2 − 8(D − 3)ϕRµν(∇µϕ∇νϕ−∇µ∇νϕ)

+ 8(D − 3)(D − 2)ϕ(∇µϕ∇νϕ)(∇µ∇νϕ)− 4(D − 3)(D − 2)ϕ(∇µ∇νϕ)(∇µ∇νϕ)
])
.

(2.47)
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Integrating by parts, and making use of the identity7

∇µ

[
□ϕ∇µϕ− 1

2
∇µ (∇ϕ)2

]
= (□ϕ)2 − (∇µ∇νϕ)

2 −Rµν∇µϕ∇νϕ, (2.48)

and the Bianchi identities, we can find that the action reads

S =

∫
M
dDx

√
−g
[
R +

α

�����(D − 4)
�����(D − 4)

(
4(D − 3)Gµν∇µϕ∇νϕ− ϕG

− 4(D − 5)(D − 3)□ϕ (∇ϕ)2 − (D − 5)(D − 3)(D − 2)(∇ϕ)4
)]

+ Sm .

(2.49)

On taking the four-dimensional limit, this becomes

S =

∫
M
d4x

√
−g
[
R+α

(
4Gµν∇µϕ∇νϕ−ϕG+4□ϕ(∇ϕ)2+2(∇ϕ)4

)]
+Sm , (2.50)

which can be seen to be a four-dimensional action free of divergences. This action

belongs to the Horndeski class of theories [104,105], with functions

G2 = 8αX2, G3 = 8αX, G4 = 1 + 4αX, G5 = 4α logX. (2.51)

It can also be noted that the action has a shift symmetry in the scalar field, i.e.,

invariance under the set of transformations ϕ → ϕ + C, where C is an arbitrary

constant, and therefore the theory possesses a conserved Noether current.

Given the four-dimensional action (2.50), the variational principle can be applied

to get the field equations

Gµν + αHµν = Tµν , (2.52)

where

Hµν =2Gµν (∇ϕ)2 + 4Pµανβ

(
∇αϕ∇βϕ−∇β∇αϕ

)
+ 4 (∇µϕ∇νϕ−∇ν∇µϕ)□ϕ

+ 4 (∇αϕ∇µϕ−∇α∇µϕ) (∇αϕ∇νϕ−∇α∇νϕ)

+ gµν

(
2 (□ϕ)2 − (∇ϕ)4 + 2∇β∇αϕ

(
2∇αϕ∇βϕ−∇β∇αϕ

) )
,

(2.53)

with

Pαβµν ≡ 1

4
ϵαβγδR

ρσγδϵρσµν = 2 gα[µGν]β + 2 gβ[νRµ]α −Rαβµν , (2.54)

being the double dual of the Riemann tensor. The corresponding scalar field equa-

7The identity follows straightforwardly by commuting covariant derivatives after expanding the
left-hand side.
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tion is

G̃ = 0, (2.55)

which is equivalent to

Rµν∇µϕ∇νϕ−Gµν∇µ∇νϕ−□ϕ (∇ϕ)2+(∇µ∇νϕ)
2−(□ϕ)2−2∇µϕ∇νϕ∇µ∇νϕ =

1

8
G.

(2.56)

Interestingly, a suitable combination of the scalar field equation and the trace of the

field equations results in the purely geometric condition,

R +
α

2
G = −T, (2.57)

which is exactly the same form as the trace of the field equations of the original

4DEGB theory. Our theory therefore exactly reproduces the only known well-defined

field equation of the 4DEGB theory, and suggests that there may have been a hidden

scalar degree of freedom in the original theory, which may be one reason it has not

yet been proven possible to write its full field equations in terms of curvature tensors

only (see Section 2.1.1).

2.2.2.1 Regularization with the dimensional derivative

Before continuing, let us again consider the two-dimensional case, but where we

employ the following regularization scheme for the Ricci scalar

L = −α lim
D→2

√
−g̃R̃−

√
−g̃R̃

∣∣
D=2

(D − 2)
. (2.58)

This looks very similar to the previously presented regularization, but differs as we

add a counter-term whose numerator is already evaluated in two dimensions, where

all quantities are tilded. A more careful reading reveals that the expression above

is nothing but a dimensional derivative:

L = −α d

dD

(√
−g̃R̃

) ∣∣∣∣
D=2

, (2.59)

which one can immediately see to be free of divergences as there is no divergent fac-

tor. The dimensional derivative here plays the role of canceling the (D − 2) factors

appearing in the equations of motion, much like the divergent factors introduced by
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Glavan & Lin [110]. That is,

d

dD
(D −N)

∣∣∣∣
D=N

= 1 instead of lim
D→N

1

(D −N)
(D −N) = 1. (2.60)

To compute the Lagrangian (2.59) we proceed by going from the tilded frame to the

non-tilded frame

L =− α
d

dD

(√
−ge(D−2)ϕ

[
R− 2(D − 1)□ϕ− (D − 1)(D − 2) (∇ϕ)2

]) ∣∣∣∣
D=2

,

=− α
√
−g
(
e(D−2)ϕϕ

[
R− 2(D − 1)□ϕ− (D − 1)(D − 2) (∇ϕ)2

]
− e(D−2)ϕ

(
2□ϕ+ ((D − 1) + (D − 2)) (∇ϕ)2

))∣∣∣∣
D=2

,

(2.61)

where we assumed that non-tilded quantities do not possess a dimensional depen-

dence. Evaluating the two-dimensional limit, we observe no divergences and obtain

L = −α
√
−g
(
ϕR + (∇ϕ)2

)
, (2.62)

which is the same exact Lagrangian as we obtained in Eq. (2.38). The same di-

mensional derivative procedure can be applied in 4D to the Gauss-Bonnet invariant,

resulting in the same action as the counter-term regularization of Eq. (2.50).

2.3 Other regularization procedures leading to

well-defined Einstein-Gauss-Bonnet Theories

in Four Dimensions

In this section we briefly review other regularization methods employed by other

authors. In particular, we will review the procedure applied in Refs. [256, 257],

which consists of performing a Kaluza-Klein compactification of D−dimensional

Einstein-Gauss-Bonnet gravity on a maximally symmetric space-time of (D − 4)

dimensions. Here the coupling factor α is taken to have the same singular scaling,

and we keep only the breathing mode characterizing the size of the internal space.

This regularization procedure will be of importance to the content presented in

Chapter 5, for reasons that will become clearer later on.

We start the Kaluza-Klein regularization process by parametrizing theD−dimensional
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metric as

ds2D = ds24 + e−2ϕdΣ2
D−4, λ , (2.63)

where the scalar field ϕ depends only on the 4-dimensional coordinates, ds24 is the

4-dimensional line-element and dΣ2
D−4, λ is the line-element of an internal maximally

symmetric space of (D − 4) dimensions whose curvature tensor is given by

Rabcd = λ(gacgbd − gadgbc), (2.64)

with λ a constant representing the curvature of the internal space. Under these

assumptions, the Einstein-Gauss-Bonnet action (2.1) reduces to

S =
1

16πG

∫
d4x

√
−ge−(D−4)ϕ

{
R + (D − 4)(D − 5)

(
(∇ϕ)2 + λe2ϕ

)
+ α

(
G − 2(D − 4)(D − 5)

[
2Gµν∇µϕ∇νϕ− λRe2ϕ

]
− (D − 4)(D − 5)(D − 6)

[
− 2 (∇ϕ)2□ϕ+ (D − 5)(∇ϕ)4

]
+ (D − 4)(D − 5)(D − 6)(D − 7)

[
2λ (∇ϕ)2 e2ϕ + λ2e4ϕ

] )}
.

(2.65)

As we are interested in taking the limit D → 4 we employ a method similar to

counter-term regularization, namely expand the exponential and discard terms of

order (D − 4)2. Moreover, we can remove the bare Gauss-Bonnet term by introduc-

ing a counter-term and re-scaling the coupling constant as α → α/ (D − 4). In the

end, the D → 4 limit leaves

S =

∫
d4x

√
−g
[
R + α

(
4Gµν∇µϕ∇νϕ− ϕG + 4□ϕ(∇ϕ)2 + 2(∇ϕ)4

− 2λe2ϕ
[
R + 6 (∇ϕ)2 + 3λe2ϕ

] )]
.

(2.66)

This regularized action can be seen to differ from the one obtained via the counter-

term regularization by the terms proportional to λ, with λ = 0 (flat internal space)

recovering the counter-term regularized theory in Eq. (2.50) precisely.

If one were to keep the λ-dependent terms, then the resulting field equations would

take the form

Gµν + α
(
Hµν − 2λe2ϕAµν + 3λ2e4ϕgµν

)
= Tµν , (2.67)
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where

Aµν := Gµν + 2∇µϕ∇νϕ− 2∇µ∇νϕ+ gµν
(
2□ϕ+ (∇ϕ)2

)
, (2.68)

and the scalar field equation takes the form

4λ
(
6λe4ϕ + e2ϕ

(
R− 6□ϕ− 6 (∇ϕ)2

))
+ 8Rµν∇µϕ∇νϕ− 8Gµν∇µ∇νϕ

− 8□ϕ (∇ϕ)2 + 8(∇µ∇νϕ)
2 − 8(□ϕ)2 − 16∇µϕ∇νϕ∇µ∇νϕ− G = 0 .

(2.69)

Again, the theory possesses the purely geometrical equation given in (2.57), and

shares solutions with the original formulation of Ref. [110].

Finally, let us briefly discuss the alternative regularization of Ref. [259] in which

temporal diffeomorphism symmetry is explicitly broken. This regularization pro-

cedure consists on performing a Arnowitt-Deser-Misner (ADM) decomposition and

working with the Hamiltonian of the D dimensional Einstein-Gauss-Bonnet theory.

The Hamiltonian is found to split into two parts, a regular part upon taking a 4D

limit, and a Weyl part, much like the Lanczos tensor as we discussed above. The

regularization of Ref. [259] consists on completely removing the Weyl part of the

Hamiltonian (i.e., adding a counter-term which is the Weyl part of the Hamiltonian).

The price to pay, is that the resulting is only invariant under spatial diffeomorphisms

and therefore breaks the full 4D diffeomorphism invariance of GR. Furthermore, in

order to fully determine the theory, a gauge-fixing condition must be added to the

resulting Hamiltonian in order choose the constant time hypersurfaces that are pre-

ferred when breaking the temporal part of the diffeomorphisms. This gauge choice

is part of the definition of the theory and one could therefore define many such the-

ories with different gauges. This theory propagates the same number of degrees of

freedom as GR, but breaks time diffeomorphisms and therefore is still in agreement

with Lovelock’s theorem. The phenomenology of the theory has some differences

with respect to the original Glavan & Lin’s theory [110], particularly regarding the

propagation of gravitational waves [271, 272]. Nonetheless, the authors claim the

black hole and FLRW solutions of the original theory are present in this frame-

work [259].
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Gauss-Bonnet Theory in Four

Dimensions

In this chapter we will discuss the phenomenology of the 4D-Einstein-Gauss-Bonnet

theories, with a focus on the well-defined theories derived in Chapter 2, in particular

the one defined in Eq. (2.50). We will start by reviewing the black hole solutions

and how they can be obtained within the original Glavan & Lin’s approach [110].

These were briefly discussed in Chapter 2. Here we will analyse the black hole

solutions in more detail, and discuss their charged (A)dS generalizations, based on

the results of Ref. [1]. Later, we will move into the well-defined framework of the

counter-term regularized theory, and discuss its black hole solutions, based on the

results of Ref. [5]. In particular, we will demonstrate a Birkhoff-type theorem for

the theory and argue that black hole remnants from Hawking evaporation can act

as dark matter. Next, we will discuss the cosmologies of 4DEGB theories, partly

based on the results of Ref. [6].

3.1 Black Holes, Uniqueness of Solutions and a

New Dark Matter Candidate

3.1.1 Black holes in the original Glavan & Lin’s approach

Consider now the Einstein-Maxwell Gauss-Bonnet theory in D dimensions with a

cosmological constant Λ given by the action

S =
1

16π

∫
dDx

√
−g
[
R− 2Λ +

α

D − 4
G − FµνF

µν

]
, (3.1)
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where Fµν = ∂µAν − ∂νAµ is the usual Maxwell tensor. We consider a static,

spherically symmetric metric ansatz in D dimensions given by

ds2 = −e2A(r)dt2 + e2B(r)dr2 + r2dΩD−2, (3.2)

and an electrostatic vector potential A = V (r)dt. All functions are radial dependent

only and we shall omit this dependence henceforth. Substituting the metric ansatz

(3.2) and the electrostatic potential in the action (3.1) (in a process also known as

symmetric criticality [305]) we notice the existence of a first integral

V ′(r) = − Q

rD−2
eA+B, (3.3)

withQ an integration constant interpreted as the electric charge measured at infinity,

and the action reduces to the remarkably simple form

S =
ΣD−2

16π

∫
dtdr

[
rD−1ψ (1 + α(D − 3)ψ)− 2ΛrD−1

(D − 1)(D − 2)
+

2Q2r3−D

(D − 3)(D − 2)

]′
× eA+B(D − 2),

(3.4)

with the prime denoting a radial derivative, ΣD−2 = 2π
D−1
2

Γ[D−1
2 ]

the surface area of the

(D − 2)-dimensional hypersurface dΩD−2 and where we have defined

ψ = r−2
(
1− e−2B

)
. (3.5)

From the action (3.4), upon variation with respect to the metric functions, one can

find the solution

eA+B = 1, (3.6)

ψ (1 + α(D − 3)ψ)− 2Λ

(D − 1)(D − 2)
+

2Q2r4−2D

(D − 3)(D − 2)
=

16πM

(D − 2)rD−1ΣD−2

, (3.7)

with M the ADM mass, appearing as an integration constant. Taking the limit

D → 4, we obtain the exact solution in closed form

−g00 = e2A = e−2B = 1 +
r2

2α

(
1±

√
1 + 4α

(
2M

r3
− Q2

r4
+

Λ

3

))
,

A =
Q

r
dt,

(3.8)
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As with maximally symmetric space-times, there are two branches: the Gauss-

Bonnet branch with a plus sign, and the GR branch with the minus sign. The

Gauss-Bonnet branch behaves asymptotically as

−g00 ∼ 1 +
2M

r
√

1 + 4αΛ
3

− Q2

r2
√

1 + 4αΛ
3

+
r2

2α

(
1 +

√
1 +

4αΛ

3

)
+O

(
1

r3

)
, (3.9)

while the one with the minus sign behaves as

−g00 ∼ 1− 2M

r
√

1 + 4αΛ
3

+
Q2

r2
√

1 + 4αΛ
3

+
r2

2α

(
1−

√
1 +

4αΛ

3

)
+O

(
1

r3

)
. (3.10)

In the first case, in the limit of vanishing cosmological constant, we asymptotically

obtain a Reissner-Nordström-AdS solution with negative gravitational mass and

imaginary charge, while the latter reduces to the Reissner-Nordström solution with

positive gravitational mass and real charge. The Gauss-Bonnet branch is typically

disregarded as a physically-interesting solution, because it does not present a well-

defined limit as α vanishes and because the mass term has the wrong sign. It is

interesting to note that

1+
r2

2α

(
1−

√
1 + 4α

(
2M

r3
− Q2

r4
+

Λ

3

))
= 1−

2M
r

− Q2

r2
+ Λ

3
r2

1
2

(
1 +

√
1 + 4α

r2

(
2M
r

− Q2

r2
+ Λ

3
r2
)) ,

(3.11)

where the GR limit (α → 0) is manifest.

The event horizon of the black holes r+ is larger root of the following equation

1− 2M

r
+
Q2 + α

r2
− Λ

3
r2 = 0, (3.12)

which in the absence of a cosmological constant, has the simple solution

r± =M ±
√
M2 −Q2 − α. (3.13)

Note that Eq. (3.12) follow For a non-vanishing cosmological constant the expression

for r+ is complicated and not particularly elucidative, thus we do not present it here.

The physical properties of this branch differ depending on whether the mass M is
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larger or smaller than a critical mass given by

M∗ =
√
Q2 + α. (3.14)

To illustrate, in Fig. 3.1 we plot the radial dependence of the metric function −g00
(for the branch with the negative sign) for three situations: one with M < M∗,

other with M > M∗ and the extremal case M = M∗. If M < M∗ there are no

(a)

(b)

(c)

0.0 0.5 1.0 1.5 2.0

-0.2
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0.4

0.6

0.8

1.0

r/2M

-
g

0
0

Figure 3.1: Metric function −g00 as a function of the radial coordinate for several
values ofM∗/M for the minus sign branch, in the absence of a cosmolog-
ical constant. (a, blue) M < M∗; (b, green) M =M∗; (c, red) M > M∗.

horizons, and thus no BH solutions, while for M > M∗ there are two horizons as

given in (3.13), and for M = M∗ there is one degenerate horizon, corresponding to

an extremal BH. In the limit α → 0 we recover, for the negative sign branch, the

Reissner-Nordström-AdS metric from general relativity

− lim
α→0

g00 = 1− 2M

r
+
Q2

r2
+
r2

l2
. (3.15)

Particularly important limits of the solution are:

1. In the case of vanishing charge Q and cosmological constant, we recover the

solution in Eq. (2.22), first obtained in Ref. [110].

2. For a vanishing cosmological constant we obtain the electrically charged solu-

tion of the theory, analogous to the Reissner-Nordström BH from GR electro-
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vacuum.

3. For both vanishing mass and charge we arrive at the (A)dS solutions of the

model.

4. In the limit α → 0, we recover GR solutions.

Considering the simplest case (uncharged, without a cosmological constant), we

find that the metric components are finite as r → 0:

lim
r→0

f(r) = 1. (3.16)

Even though the metric components are finite, the central singularity located at

r = 0 still exists. The Ricci and Kretschmann scalars of the metric are

R =
120α2M2 + 24αMr3 (3− 2K) + 6r6 (1−K)

αr6K3
, (3.17)

RµναβR
µναβ =

12
(
2αM
r3

+ 1
) (

4α2(37− 20K)M2r3 + 2α(11− 9K)Mr6 + (1−K)r9 + 216α3M3
)

α2K6r9
.

(3.18)

where K =
√

8αM
r3

+ 1. Near r = 0, assuming a non-vanishing value of α we have

R ≈ 15

2

√
M

2α
r−3/2, and RµναβR

µναβ ≈ 81M

8α
r−3, (3.19)

Note that the Gauss-Bonnet term has weakened the singularity when compared to

the Schwarzschild black hole from GR, where the Kretschmann scalar diverges as

r−6 near the center. One should note that the expansion of the curvature invariants

near r = 0 should be taken carefully, as in the limit of small α and r there are

competing effects between the two. Another singularity exists if we were to consider

a negative value of α, located at the radius for which the quantity inside the square

root in the solution (2.22) vanishes:

r3 = −8Mα. (3.20)

The shadow, innermost stable circular orbit (ISCO) and the quasi-normal modes of

these black holes have been studied in Refs. [113,114].
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3.1.1.1 Thermodynamics

In this section, we briefly explore the thermodynamics of these black holes. Hence-

forth, we shall restrict our discussion to the GR (negative) branch of solutions, as it

should be considered the physical branch. The thermodynamics of charged Einstein

Gauss-Bonnet black holes with a cosmological constant are discussed in detail in an

arbitrary number of dimensions in Ref. [306].

We start by expressing the black hole massM in terms of r+ by solving g00|r=r+ =

0, resulting in

M =
r+
2

(
1−

Λr2+
3

+
Q2 + α

r2+

)
. (3.21)

The Hawking temperature, as discussed in the introduction, is given by

T =
κ

2π
, (3.22)

where κ is the surface gravity given by κ2 = −1
2
∇µξν∇µξν , with ξµ a killing vector,

which for a static, spherically symmetric case takes the form ξµ = ∂µt . For our metric

ansatz (3.2) the surface gravity is

κ =
1

2

d

dr
(e2A)|r=r+ , (3.23)

resulting in a Hawking temperature given by

T =
r2+ − α−Q2 − r4+Λ

4πr+(r2+ + 2α)
. (3.24)

For a null cosmological constant, the temperature vanishes if M = M∗ defined in

Eq. (3.14). Thus, black holes whose mass is equal to the critical mass are extremal

BHs.

In GR the entropy S of a black hole obeys the Hawking-Bekenstein formula

S = A/4, where A is the area of the event horizon of the black hole. In general,

when considering higher-order curvature terms, however, the black hole entropy does

not satisfy the Hawking-Bekenstein relation. To compute the entropy we use the

approach of Ref. [307], which is based on the fact that, as thermodynamic systems,

black holes must obey the first law of thermodynamics

dM = TdS +
∑
i

µidQi, (3.25)

where µi are the chemical potentials corresponding to the conserved charges Qi.
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Using Eq. (3.25) one has

S = S0 +

∫
1

T
dM = S0 +

∫ r+

0

1

T

(
∂M

∂r′+

)
Qi

dr′+, (3.26)

where S0 is an integration constant to be fixed later. The BH entropy is then given

by

S = πr2+ + 2πα log r2+ + S̃0 ≡
A

4
+ 2πα log

A

A0

, (3.27)

with A0 a constant with units of area8. This expression coincides with the Hawking-

Bekenstein formula plus a logarithmic correction term. According to statistical

interpretations of the black hole entropy in some quantum theories of gravity such

as loop quantum gravity and string theory, it can be argued that the leading term of

statistical degrees of freedom yield the Hawking-Bekenstein area term, whereas the

subleading term is logarithmic [290–292]. However, it is quite difficult to produce

such a logarithmic term in the black hole entropy in some effective local theory of

gravity even with higher-curvature terms. The 4DEGB theory then provides an

example where a logarithmic correction to the black hole entropy is present. Re-

markably, all explicit contributions from the charge Q and cosmological constant

cancel out, resulting in a simple expression. As a remark, the branch with a pos-

itive sign, however, does not obey the Hawking-Bekenstein formula plus a simple

logarithmic correction for the entropy, presenting a complicated lengthy expression

which is not particularly elucidative.

3.1.2 Black holes in the counter-term regularized theory,

uniqueness of solutions, and a new dark matter

candidate

The results of this section are based of Ref. [5]. Now we turn to the scalar-tensor well-

defined regularized theory that was presented in Eq. (2.50), to which we introduce

a cosmological constant and an electromagnetic field in order to compare with the

results from last section

S =
1

16π

∫
d4x

√
−g
[
R−2Λ−FµνF

µν+α
(
4Gµν∇µϕ∇νϕ−ϕG+4□ϕ(∇ϕ)2+2(∇ϕ)4

)]
.

(3.28)

8Imposing that the entropy vanishes as the black hole tends to its minimum size (and its tem-
perature vanishes), fixes A0 = 4παe1/2.
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The field equations are

Gµν + Λgµν + αHµν = 2

(
FµσF

σ
ν − 1

4
gµνFρσF

ρσ

)
, (3.29)

where Hµν was defined in Eq. (2.53). The scalar field equation is the same as

presented in Eq. (2.69), G̃ = 0. Because the electromagnetic stress-energy tensor is

traceless, the usual trace equation holds

R− 4Λ +
α

2
G = 0. (3.30)

We further note, again, that the action is shift-symmetric in the scalar field, i.e., it is

invariant under the set of transformations ϕ→ ϕ+ C, for any constant C. By virtue

of this symmetry we acquire a Noether current with vanishing divergence [72]:

jµ =
1√
−g

δS

δ(∂µϕ)
, such that ∇µj

µ = 0 . (3.31)

In fact, the vanishing divergence ∇µj
µ = 0 implies ∂µ (

√
−gjµ) = 0, which also

recovers the scalar field equation of motion. We will make use of this fact in what

follows, where we will discuss the black hole solutions of this theory.

Solving the field equations for the following line element

ds2 = −A(r)dt2 +B(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (3.32)

one finds a solution equal to that presented in Eq. (3.8)

B(r)−1 = A(r) = 1 +
r2

2α

(
1±

√
1 + 4α

(
2M

r3
− Q2

r4
+

Λ

3

))
, (3.33)

and M is the associated mass and Q the electric charge. The corresponding scalar

field profile for this solution is given up to a quadrature by

ϕ′(r) =
1−

√
A(r)

r
√
A(r)

=

√
B − 1

r
, (3.34)

where the prime here denotes a derivative with respect to r. A more in-depth

analysis of the above geometry was already done in the previous section.

In what follows, we consider only the asymptotically flat, non-charged case, Q =

Λ = 0, and therefore consider only the pure 4DEGB theory in Eq. (2.50). The
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physical solution is then

B(r)−1 = A(r) = 1 +
r2

2α

(
1−

√
1 +

8Mα

r3

)
, (3.35)

with the same scalar field profile as before. We will show that this solution is one of

only two static asymptotically-flat spherically-symmetric solutions to the regularized

4DEGB theory, and is the unique static and asymptotically flat black hole solution.

We will follow this by demonstrating that the regularized 4DEGB theory admits

no spherically-symmetric asymptotically-flat time-dependent perturbations to this

solution, which indicates that there are no other spherically symmetric solutions

(even time dependent ones) in the neighbourhood of this solution. Together, these

results suggest that (3.35) is the unique asymptotically-flat spherically-symmetric

vacuum black hole solution of this theory (without assuming staticity), a result

analogous to Birkhoff’s theorem of GR.

3.1.2.1 Uniqueness of Static Black Holes

The first step in demonstrating the uniqueness of (3.35) is to study the existence of

solutions at spatial infinity under the assumption of asymptotic flatness. To do this

we take Eq. (5.21) as an ansatz for the most general static spherically symmetric

solution, and impose asymptotic flatness by assuming that in the limit r → ∞,

A(r) → 1, B(r) → 1 and ϕ(r) → 09, and expand the functions of interest as a power

series in 1/r:

A(r) = 1 +
∞∑
n=1

An

rn
, B(r) = 1 +

∞∑
n=1

Bn

rn
, ϕ(r) =

∞∑
n=1

qn
rn
. (3.36)

Substituting these expressions into the field equations, the (r-r) equation imme-

diately tells us that A1 = −B1 and the scalar field equation that q1 = ±B1/2.

Selecting either the positive or negative branch, one finds that constants at higher

order can all be fixed in terms of B1 with no further choices, and therefore that there

are two series solutions each of which can be written in terms of a single constant.

We identify this constant as a mass setting B1 = 2M , and at leading order one then

finds the scalar charge, q1, is given by q1 = ±M . Choosing q1 = −M and proceeding

using the field equations to fix coefficients order by order, one finds a series solution

which matches the Taylor expansion of the black hole solution (3.35) up to the order

9Here we can make use of the scalar field shift symmetry to impose limr→∞ ϕ(r) = 0.
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we have checked. On the other hand, choosing q1 = +M leads to a second solution

with expansion

A(r) = 1− 2M

r
− 4M2α

r4
+O

(
1

r5

)
,

B(r) = 1 +
2M

r
+

4M2

r2
+

8M3

r3
+

4M2(4M4 + 3M2α)

r4
+O

(
1

r5

)
,

ϕ(r) =
M

r
+
M2

r2
+

4M3

3r3
+

2M2(M2 + α)

r4
+O

(
1

r5

)
. (3.37)

We note that for this solution the expansion tells us that B−1 ̸= A, which we will

comment on further below.

This analysis already indicates that there are only two static and spherically-

symmetric asymptotically flat vacuum solutions in regularized 4DEGB, but relies

on the validity of a perturbative expansion. Making use of the Noether current

(3.31) we can go further: taking the ansatz (5.21) and utilizing the expressions in

Ref. [72] we find that jµ can be written as jµ = (0, jr, 0, 0), where

jr =

(
A′ + 2Aϕ′

) (
(rϕ′ + 1)2 −B

)
2r2AB2

. (3.38)

Moreover, assuming the ansatz (5.21), Eq. (3.31) can be integrated to give

√
ABr2jr = constant. (3.39)

Assuming asymptotic flatness, this constant can be seen to be zero by substituting

the leading terms from either of the series solutions considered above into Eq. (3.38).

The same result can also be demonstrated independently of perturbation theory by

integrating Eq. (3.31) over a region of space-time that is external to the horizon, and

which is bounded by the event horizon and two space-like surfaces that are identical

to each other up to a translation along the Killing field ξµ, which is time-like in the

black hole exterior.

To show this, we can begin by noting that Gauss’ theorem means that the volume

integral of ∇µj
µ can be converted to an integral of the normal component of j⃗

over the boundary. We can then see that the contribution to this integral from the

integral over the event horizon will vanish. This is because the Killing vector ξµ is

a generator of this horizon, and because the event horizon itself is a null surface.

These two facts mean that ξµ must also be the normal to the horizon (as null vectors

are normal to themselves), and therefore that the normal component of the current
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j⃗ must vanish on this surface (assuming that j⃗ displays the same symmetries as

the spacetime, and therefore that jµξµ = 0). Now, the identical nature of the two

space-like surfaces means that the integral of the normal component of j⃗ over them

must sum to zero, and therefore they also contribute nothing to the integral over the

boundary. We then conclude that the normal component of j⃗ must vanish at the

remaining part of the boundary. This segment of the boundary is time-like, and as

there is nothing special about its location, we must therefore conclude that jr = 0

at all points exterior to the event horizon, which demonstrates that the constant in

Eq. (3.39) must be equal to zero.

Now, Eq. (3.38) allows us to calculate the two possible scalar field profiles non-

perturbatively, in terms of the functions A and B, as

ϕ = −1

2
log(A) or ϕ′ =

−1±
√
B

r
. (3.40)

The second profile with the plus sign corresponds to the case of q1 = −M . Substi-

tuting this into the field equations, the (t-t) equation and a suitable combination of

the (t-t) and (r-r) equations give us10

(B − 1)B
(
−α +B

(
α− r2

))
− r(−2α +B

(
2α + r2

)
)B′ = 0

and

(−2α +B
(
r2 + α

)
)(AB′ + A′B) = 0.

(3.41)

The first equation admits a solution for B that coincides with B given by (3.35),

while the second equation admits the solution A = CB−1 where C is a constant

that can be absorbed into a redefinition of t in the metric. This scalar field profile

therefore coincides with that of (3.35) and leads to the known black hole.

The first scalar field profile in Eq. (3.40) corresponds to the q1 =M case, and the

Taylor expansion of this profile matches the expansion in Eq. (3.37). Recall that in

this case the series solution indicates that the functions A and B−1 are not equal.

Studying the field equations has not allowed us to find a closed-form solution for the

metric functions A and B in this case, so in order to make progress in understanding

this solution we instead integrate the field equations numerically in r from large r

using the series solution to provide initial conditions. As seen in Fig. 3.2 (left), we

observe that the functions A and B−1 coincide at large r, but differ drastically for

10Substitution of the second profile with the minus sign leads to the same exact field equations
and solutions. In this case, however, the scalar field profile is not asymptotically flat (albeit
ϕ′ → 0, nonetheless).
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small values of the radial coordinate, where the function B develops a kink outside

any horizon (as indicated by the arrow in the figure). As this point is approached

the curvature scalar diverges, as shown in Fig. 3.2 (right). This behaviour indicates

the presence of a naked singularity. We also observe that the (t-t) component of the

field’s stress-energy tensor is negative, which may lead one to question whether this

particular solution is of any direct physical significance at all.

α=0.1, M=1

Naked Singularity

B
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Figure 3.2: Left: Profiles for the metric functions that solve the field equations for
the scalar field profile ϕ = −1

2
log(A), for the fiducial choice α = 0.1 and

M = 1. Right: Respective Ricci scalar and (t-t) component in the field’s
stress energy tensor. A similar behaviour is observed for other values of
the coupling α.

Further evidence that demonstrates that these solutions do not represent a black

hole can be obtained by expanding the metric functions in a power series around

the position at which they would tend to zero, denoted r+, if the solution was to

describe a black hole. This gives

A =
∞∑
n=1

an(r − r+)
n, B−1 =

∞∑
n=1

bn(r − r+)
n . (3.42)

On substitution into the field equations, this immediately implies that b1 = 0. A

non-zero value of b1 is required for this position to be the horizon of a non-extremal

black hole, and hence this automatically indicates that if the solution describes a

black hole, it has to be extremal. This can be seen by computing the black hole

temperature T+, which for the line-element of Eq. (5.21), assuming the near-horizon

expansion of Eq. (3.42), reads

T+ =
κ

2π
=

1

4π

[
1√

−gttgrr
dgtt
dr

]
r=r+

=

√
a1b1
4π

, (3.43)
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where κ is the surface gravity of the black hole, and T+ can be seen to vanish if

b1 = 0. Moreover, a more careful analysis reveals that the aforementioned power

series is incompatible with the field equations, yielding no perturbative solutions.

To summarise, we have shown that (3.35) is the unique static spherically-symmetric

and asymptotically-flat vacuum black hole solution to the regularized 4DEGB the-

ory, and that there exists one other (likely unphysical) spherically-symmetric and

asymptotically-flat solution which corresponds to a naked singularity.

3.1.2.2 Time-Dependent Perturbations

Let us now generalize our considerations to allow for time dependence. To do so

we will return to the ansatz (5.21), but now allow A and B to be functions of t

as well as r. We begin by considering spherically-symmetric time-dependent per-

turbations about (3.35). In GR such perturbations must of course be zero, by

virtue of Birkhoff’s theorem. We will now show that a similar result holds in

regularized 4DEGB, provided we restrict our attention to spherically-symmetric,

asymptotically-flat perturbations.

We denote quantities associated with the exact solution (3.35) using a subscript

0, and expand the metric functions as

A(t, r) = A0(r) +
∞∑
n=1

εnAn(t, r) , B(t, r) = B0(r) +
∞∑
n=1

εnBn(t, r) ,

ϕ(t, r) = ϕ0(r) +
∞∑
n=1

εnϕn(t, r) ,

(3.44)

where ε is a small parameter. Substituting (3.44) into the field equations, and

expanding to first order in ε, we find that the (t-r) field equation gives

Ḃ1 = 0 , (3.45)

where the dot indicates differentiation with respect to t. This implies that B1 must

be a function of r only, and by virtue of the results for the static case above we

know any such function must be zero11. Therefore, setting B1 = 0, we find that the

(t-t) field equation is automatically satisfied to first order in ε. On the other hand,

11This is because B1(r) can be re-absorbed into B0(r). It can be explicitly verified that this is
equivalent to considering a background solution with a slightly perturbed massM+ε δM . New
terms resultant from considering this new background solution are of O(ε), and can then in
turn be reabsorbed into the perturbations A1.
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the (r-r) equation and trace equation give

ϕ′
1 =

(2α− 2αA0 + r2) (A0A
′
1 − A1A

′
0)

4αA0

(
−rA′

0 + 2A0 − 2
√
A0

) , (3.46)

and

0 =A1

(
A′

0

((
2α + 2αA0 + r2

)
A′

0 − 4rA0

)
− 2A0

(
2α− 2αA0 + r2

)
A′′

0

)
+ A0A

′
1

(
4rA0 −

(
2α + 2αA0 + r2

)
A′

0

)
+ 2A0

2
(
2α− 2αA0 + r2

)
A′′

1 ,
(3.47)

respectively, where the dash again indicates a derivative with respect to r. Equation

(3.47) has the general solution

A1 = A0

(
c1(t) + c2(t)

∫ r 1

A
3/2
0 (2α− 2αA0 + r2)

dr

)
, (3.48)

where c1(t) and c2(t) are free functions of time. Substituting Eq. (3.48) into Eq. (3.46),

the term proportional to c1(t) drops out, and one finds

ϕ1 = c3(t) +

∫ r c2(t)

4α
√
A0

(
2A0 − 2

√
A0 − rA′

0

)dr ∼ c3(t)−
c2(t)r

2

32Mα
+O(r) , (3.49)

where in the last step we have made an expansion in r near spatial infinity. If we

now assume asymptotic flatness of the perturbations, we can set both c2 and c3 to

zero. This implies ϕ1 = 0 and A1 = c1(t)A0. Moreover, since c1 is a function only of

t, this can be absorbed into a re-definition of t in the line-element, such that we can

effectively set A1 = 0. With all linear perturbations set to zero, this further implies

there are no source terms for higher-order perturbations.

We therefore conclude from this analysis that there exist no spherically-symmetric,

asymptotically-flat perturbations to the solution (3.35), and therefore that the black

hole solutions of Eq. (3.35) are perturbatively stable.

3.1.2.3 Evaporation remnants

In this section we reintroduce the constants c, G, ℏ and kB for clarity. Having

argued for the uniqueness of the black hole solution (3.35), we now turn to its

further consequences. First we observe that such a black hole has a minimum size,

and that the evaporation process leads to a remnant12.

12This is in contrast with other scalar-Gauss-Bonnet theories typically studied in the literature,
where the evaporation never halts (see e.g. [7] and Chapter 7).
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To see that black holes leave a remnant, we first note that the black hole solution

(3.35) contains horizons located at

r± =
GM

c2
±

√(
GM

c2

)2

− α , (3.50)

where we have reintroduced physical constants, and that r+ has a minimum value

of rmin ≡
√
α (this happens when M = c2

√
α/G). The Hawking temperature of the

black hole can be computed straightforwardly as before, giving

T+ =
ℏc

4πkB
A′(r+) =

ℏc
4πkB

r2+ − α

r+ (r2+ + 2α)
, (3.51)

where we observe that for r+ = rmin the Hawking temperature vanishes, as also

seen in Fig. 3.3. A similar black hole temperature profile is found in other contexts

commonly related to quantum gravity, such as non-commutative models [308–312]

and asymptotically safe gravity [312–314].
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Figure 3.3: Temperature of the 4DEGB black hole as a function of the horizon ra-

dius. One observes that as r+/
√
α →

√
1
2

(
5 +

√
33
)
≈ 2.31782, the

temperature hits a maximum, and rapidly falls as the horizon radius
decreases. The temperature approaches zero as r+/

√
α → 1.

Assuming a Stefan-Boltzmann law to estimate the mass and energy output as

functions of time gives

−dE
dt

= 4πr2+σT
4
+, where σ =

π2k4B
60ℏ3c2

(3.52)

which allows us to write the following dimensionless differential equation for our
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black holes:

dm

dτ
= − 1

240π

[
β2 −m2

(
1 +

√
1− β2

m2

)]4
(
1 +

√
1− β2

m2

)2

m2

[
β2 + 2m2

(
1 +

√
1− β2

m2

)]4 , (3.53)

where we have defined the dimensionless quantities

m :=
M

Mpl

, τ :=
t

tpl
, β :=

√
α

ℓpl
, (3.54)

normalized with the Planck units13

M2
pl :=

ℏc
G
, ℓ2pl :=

ℏG
c3
, t2pl :=

ℏG
c5
. (3.55)

We see that the solutions to this equation will have a mass m → β as τ → ∞,

as demonstrated by the numerical solutions displayed in Fig. 3.4. Observe that as

m → β, dm/dτ → 0 as indicated by Eq. (3.53). Furthermore, we note that the

timescale over which a black hole with dimensionless mass m = m0 evaporates to

its final value m = mf , tev, is given by

tev =20πtpl

[
128

(
m3

0 −m3
f +m2

0

√
m2

0 − β2

)
+ 960β2 (m0 −mf )+

486β4

(
mf

m2
f − β2

− m0

m2
0 − β2

)
+ 1024β2

√
m2

0 − β2 − 648β2√
m2

0 − β2

+ 729β3 log

(
(m0 − β)(mf + β)

(m0 + β)(mf − β)

)
−

8
(
16m4

f + 112m2
fβ

2 − 209β4
)√

m2
f − β2

]
.

(3.56)

This means that evaporation of these black holes in regularized 4DEGB leads to

a relic, which no longer radiates, and which has a size of
√
α. This is a favorable

feature from the point of view of cosmic censorship hypothesis.

3.1.2.4 Relic Primordial Black Holes and Dark Matter

An immediate consequence of the end state of evaporation identified above is that the

relics of black holes formed in the early universe must survive until today. Such relics

may therefore contribute to the dark matter that is observed in the late Universe.

13Our definition of Mpl here differs by a factor of 8π with respect to the one we have been using.
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Figure 3.4: Time evolution of the dimensionless mass m =M/Mpl (left) and its time
derivative (right) due to Hawking evaporation, for black holes with initial
mass m0 = 10 for a sample of values of the dimensionless coupling β. If
β = 0, black holes are described by the Schwarzschild solution of GR and
evaporate completely, with dm/dτ → ∞ near the end of evaporation.
4DEGB black holes, on the other hand, approach a minimum size as
m→ β and evaporation comes to a halt.

The idea of primordial black holes (PBHs) contributing to the dark matter is not a

new one [315,316], and the possibility of Planck-size black hole relics playing the role

of dark matter was first pointed out by MacGibbon [317] and has been explored by

many authors [311,312,318–330] (also see Ref. [331] for a review on black hole relics

and their implications for the information loss paradox). In most of these studies

the possible black hole relics are taken to be of Planck mass.

In the current setting there are several complications. First, the mass of the relic

is now equal to βMpl ∝
√
α. Secondly, the evaporation timescale is altered, being

given by Eq. (3.56). And finally, the Friedmann equation for a flat universe in

regularized 4DEGB gravity is given by14

H2 +
α

c2
H4 =

8πG

3
ρ . (3.57)

The term proportional to α on the left-hand side of this equation may play a role

in the early universe, as it scales like H4.

In what follows, we will assume that a population of black holes can form when

large perturbations re-enter the horizon during the period of radiation domination

after inflation ends (in a qualitatively similar way to the process that occurs in

standard general relativistic cosmology). We will further assume that all dark mat-

14For simplicity, here we ignored a dark-radiation-like term of the form K/a4, where K is a
free parameter. These type of terms are common in scalar-tensor theories. This equation is
discussed in more detail in the next section.
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ter today consists of black hole remnants, and that the black holes initially form

with a single (dimensionless) mass, mPBH. On this basis, we will estimate the al-

lowed parameter range of mPBH and β. Of course, it would be interesting to study

further the precise details of how structure collapses and black hole formation oc-

curs within 4DEGB, though we note that it does not appear possible to construct

Oppenheimer-Snyder collapse models in regularized 4DEGB, as the scalar field from

the Friedmann interior cannot be made to match that of the black hole exterior15.

Such considerations are left to future work.

When PBHs form, their mass is given by some sizable fraction, γ, of the mass of

a horizon-sized region of the universe at the time of formation. Working in units

such that ℏ = c = 1, this leads to the formula

mPBH = γ
4π

3H3
∗Mpl

ρ∗ (3.58)

where H∗ is the Hubble rate at the time of re-entry, and

ρ∗ =
3M2

pl

8π

(
H2

∗ + β2 H
4
∗

M2
pl

)
(3.59)

is the density. Typically, a value of γ ∼ 0.2 is taken in the literature [332]. The

number of horizon-sized patches of the universe in which a black hole forms is deter-

mined by the amplitude and statistical properties of the large-density perturbations,

and hence the fraction of the universe’s energy density that turns into PBHs can be

taken as a free parameter.

There are then two main restrictions on the PBH remnant dark matter scenario.

The first is that the mass of the black hole at the time of formation must be greater

than β. The relations (3.58) and (3.59) given above imply

mPBH =
γ

2

(
Mpl

H∗β
+
H∗β

Mpl

)
β ∼ 0.1

(
Mpl

H∗β
+
H∗β

Mpl

)
β . (3.60)

For H∗ ≪Mpl/β this formula implies mPBH ∝ 1/H∗, while for H∗ ≫Mpl/β it gives

mPBH ∝ H∗. For a given β there is therefore a minimum mass of mPBH ∼ 0.2β

that can form, which corresponds to H∗ =Mpl/β. Since the minimum mass allowed

by Eq. (3.60) is just below the remnant mass, values of H∗ close to Mpl/β are

inconsistent with the outlined scenario. In fact, the consistency condition mPBH ≥ β

15This is true despite the fact that the first and second fundamental forms on either side of the
boundary can be made to match.
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imposes H∗ ≲ 0.1Mpl/β or H∗ ≳ 10Mpl/β. The second main constraint is that by

the time the Hubble rate reaches its value today, the density of dark matter and

radiation must be in their correct ratio. For a given value of β, this places an upper

bound on mPBH, for reasons we will explain in detail below. In turn this places an

upper and lower bound on H∗ due to the non-linear relationship between mPBH and

H∗ given above. The region of parameter space that satisfies both constraints is

illustrated in Fig. 3.5, where the further constraint that H∗ ≲ 5× 10−6Mpl required

by gravitational wave constraints [55] has also been imposed. The color of each

point shows the time of decay of PBHs into relics in the form of the redshift zev. We

also apply the constraint zev > zeq ≈ 3400 [333] to avoid relic production occurring

after matter-radiation equality.

Let us now attempt to understand the origin of the upper bound on mPBH. To

do so we will assume that the evaporation of the black holes can be taken to oc-

cur instantly at some time tev after their formation. This time can be estimated

using Eq. (3.56) taking m0 = mPBH and mf = 1.1β. As mPBH becomes larger the

decay time of the black holes is pushed later into the universe’s evolution. When

PBHs evaporate, they produce radiation and this contribution to the total radiation,

given by ∆ρ = (mPBH/β − 1)ρdecDM, must be smaller than the total radiation density,

which includes it. Since we are assuming relics to form all the dark matter and the

total radiation density is also well known, for sufficiently large masses, this consis-

tency condition cannot be obeyed, otherwise the relative abundances of matter and

radiation would not be correct at late time.

We can estimate the value ofmPBH at which this occurs by considering the universe

today, and extrapolating into the past to see if a consistent evolution is possible.

Doing so, the black hole remnants initially redshift like dust, and the ratio of remnant

dark matter to radiation decreases towards the past. This behavior continues until

the decay time is reached. At this time the dark matter density should jump by an

amount given by ∆ρ, and the radiation density, ρdecrad must drop by the same amount.

This must occur at energy scales at least above those of matter-radiation equality for

consistency with structure formation, and hence the universe is radiation dominated

at this time. Consistency then demands that ∆ρ < ρdecrad. The radiation density at

the time of decay can be estimated by using the expression H2 ≈ t−2
ev /4, valid

during radiation domination once standard cosmology is recovered. This gives a

good approximation of the density, except in the fine-tuned cases where ∆ρ ∼ ρrad.

If this inequality on ∆ρ cannot be satisfied it indicates there was no consistent

evolution that lead to today’s energy densities, and employing it gives the upper

bound on the mass seen in Fig. 3.5. An analytic estimate for the upper limit on the
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Figure 3.5: Bounds on the mass of the PBHs (left) and Hubble rate at formation
(right) as a function of β in order that remnants make up all dark matter
today. The scenario is allowed in the shaded region and color represents
the evaporation redshift, zev.

mass can be obtained by considering the GR limit of Eq. (3.56) for the evaporation

time, resulting in

τev ≈ 5120πm3
PBH . (3.61)

In addition, for mPBH ≫ β, we can use the approximation ∆ρ ≈ ρdecDMmPBH/β.

The ratio between the densities can be calculated by relating it to matter-radiation

equality:
ρdecDM

ρdecrad

=
adec
aeq

≈
√
Heq

Hdec

=
√
2Heqtev . (3.62)

This results in the consistency condition ∆ρ < ρdecrad becoming

mPBH < (10240πHeq/Mpl)
−1/5β2/5 . (3.63)

This approximate limit is shown in the left plot of Fig. 3.5, in which it is clear that it

works very well, except for the largest values of β allowed in this scenario for which

our approximation begins to fail, as all allowed masses are very similar to β.

In order to verify the bounds we also run more sophisticated simulations. These

begin by fixing a value for β and for the Hubble rate, H∗, at which the primordial

black holes form (and hence fixing the initial energy density and black hole mass

at the time of formation). The simulation then picks a value for the fraction of

energy density in black holes at this time, taking the rest of the energy density
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to be radiation. Finally, the code solves the ordinary differential equations given

by Eqs. (3.53) and (3.57), assuming the comoving number density of radiation and

black holes to be conserved. A cosmological constant of the value observed today

is also included. The simulation ends when the Hubble rate reaches its observed

value today, at which time the ratio between dark matter and radiation is recorded.

By trying different fractions for the initial energy density of black holes for the

same β and H∗ the simulation can then establish if any initial fraction gives the

correct abundances today for this combination of β and H∗. The simulation then

picks a new β and H∗ and tries again. Our simulations also allow us to check other

consistency requirements, such as the universe being radiation dominated at the

time of nucleosynthesis. We find results that agree remarkably well with the simpler

analytic estimate described above.

We conclude therefore that dark matter can be generated via the mechanism of

PBH evaporation in 4DEGB. We also find that remnants with a mass larger than

the Planck mass (which follow when β > 1) allow for the formation of PBHs at lower

energy scales than in the standard scenario of Planck mass remnants. For a given

energy scale, however, there is maximum value of β above which the scenario is no

longer viable, and that β ∼Mpl/H∗ is also not permitted. The situation considered

here assumed all the dark matter to be composed of relics. Should their fraction

be smaller, the upper limit on PBH mass would increase in proportion with that

fraction, with the corresponding limits on H∗ broadening too.

3.2 Cosmology

In order to be viable, any theory of gravity must give rise to a cosmology that is

both internally consistent, and compatible with the myriad of modern cosmological

observations across a huge range of energy, distance, and time scales. It is also

interesting to see what new behaviour novel theories might allow, for example at

very early times when observational constraints are less stringent. In this section,

we turn to these considerations for the 4D Einstein-Gauss-Bonnet theory.
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3.2.1 Cosmology in the original formulation of 4D

Einstein-Gauss-Bonnet gravity

3.2.1.1 Background cosmology

We begin with the homogeneous and isotopic FLRW line-element in D dimensions

ds2 = −dt2 + a2(t)
[
dχ2 + S2

k(χ)dΩ
2
]
. (3.64)

where a(t) is the scale factor, dΩ2 represents the line element for an D−2 sphere and

Sk takes the form Sk(χ) = sin(χ) for a positively curved, k = 1, universe, Sk(χ) = χ

for a flat k = 0 universe, and Sk(χ) = sinh(χ) for a negatively curved k = −1

universe. As was previously described for the flat case, considering the original

theory and following the steps discussed there, the space-time given in Eq. (3.64)

with perfect fluid matter source, T µ
ν = diag(−ρ, p, p, p, . . .), gives rise to the following

Friedmann equation in the limit D → 4:

H2 +
k

a2
+ α

(
H2 +

k

a2

)2

=
8πG

3
ρ , (3.65)

where H = ȧ/a, and the density contains all fluids present, i.e. ρ =
∑

m ρm. We

assume any cosmological constant is included in ρ, and note that since the stress-

energy tensor is conserved that all the components of ρ are expected to obey the

same conservation equations as in GR:

ρ̇m + 3H(ρm + pm) = 0 , (3.66)

where pm represents the pressure of the fluids (i.e. we will not consider interacting

fluids here).

The scalar-tensor regularized theories lead to the same equations as (3.65)-(3.66)

when particular forms for the scalar field solution are taken, and particular pa-

rameter choices are made. We will return to more general solutions, and possible

restrictions on solutions in the context of regularized theories below, and for now

focus on the behaviours prescribed by Eqs. (3.65)-(3.66).

Considering the Friedmann equation (3.65), we find that

H2 +
k

a2
=

−1±
√

1 + 32πGαρ
3

2α
. (3.67)

From this equation we see that the negative branch does not lead to a consistent
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cosmology, but that selecting the positive branch leads us to an equation that agrees

with the standard Friedmann equation as ρ tends to zero.

For negative α, H2 becomes complex when ρ > 3/(32πG|α|), and hence our

universe could not have existed at sufficiently high energies in our past for this case.

This is problematic if this value of ρ is at or below the inflationary energy scale,

placing a strong constraint on negative values of α [3] as will be discussed below. For

positive α, there is no restriction on the energy scale at which Eq. (3.67) is valid, but

one may note that the dynamics can be significantly altered at high energies, and

hence early times, becoming closer and closer to standard cosmology as ρ decays.

In this case when ρ ≫ 1/(αG) one finds H2 + k
a2

∝ √
ρ, which can have interesting

consequences particularly in the positively curved case.

Defining the equation of state w through the equation ρ = wp, the conservation

equation (3.66) implies ρ ∝ a−3(1+w). This in turn means that for large ρ the right-

hand side Eq. (3.67) scales as a−3(1+w)/2. For the positively curved case, this tells

us that a collapsing universe will undergo a bounce if it is sourced by fluids with a

combined equation of state that satisfies the condition w < 1/3 (recall that w = 1/3

is the equation of state for radiation). This follows because when this condition is

met, the right-hand side of Eq. (3.67) grows more slowly than the curvature term as

a→ 0. Taking the curvature term to the right-hand side of Eq. (3.67) we can see that

it is negative for k = 1, and if it grows faster than the other, positive, term, there

will come a value of a at which H2 goes to zero. Before this point, in a collapsing

universe, H is negative, and at this point it passes through zero and becomes positive

and H2 starts to grow again. Moreover, once the condition ρ≪ 1/Gα is reached in

the expansion phase, the term of the right-hand side Eq. (3.67) starts to decay more

rapidly than the curvature term, and once again this will lead to H passing through

zero, and the universe re-collapsing. The result is a cyclic universe. An example is

shown in Fig. 3.6 for the case of a dust cosmology.

Given the appeal of bouncing universes, and the historical interest in them, it is

intriguing that 4D Einstein-Gauss-Bonnet permits cyclic cosmologies. The exotic

behaviour described is, however, unlikely to have physical consequences given that

the phenomena is only apparent when ραG≫ 1. As we will see below, for the values

of α allowed by observational constraints, this condition would imply a value of ρ

that corresponds to a time well into the radiation dominated era, when a bounce

cannot occur.

More generally, however, we note that the modified Friedmann equation changes

the relationship between energy density and the scale factor, changing the universe’s

expansion history. This change becomes significant as ρ approaches 1/(αG) at early
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Figure 3.6: The results of numerically solving the equation of motion for ä (which
follows from differentiating Eq. (3.65)) together with Eq. (3.67) for
a dust cosmology with w = 0. We see that the universe undergoes
repeating cycles. In this example α = 100l2pl. The maximum value of
a at which the simulation begins is found by fixing the initial density
(which can be arbitrarily small), and finding the value of a which sets
H2 using Eq. (3.67) to be zero.

times, affecting for example the relation between time and temperature. This has

consequences for the confrontation of the theory with observation, as we will see

below.

3.2.1.2 Perturbed FLRW cosmology

In order to study the origin and evolution of structure in the universe, as well as

the propagation of gravitational waves, it is necessary to introduce perturbations to

the line-element (3.64), and to the stress-energy tensor. Specializing to the flat case

and using Poisson gauge [334], we have

ds2 = −a2(τ)(1 + 2φ)dτ 2 + a2(τ)(1− 2ψδij + 2∂(iFj) + γij)dx
2
j . (3.68)

and

δT 0
0 = −δρ , δT 0

i = (1 + w)ρ(∂iv + vi) , δT i
j = δijδP + πi

j , (3.69)

where τ is conformal time, φ, ψ, and v, δρ and δP are perturbative scalar quantities,

Fi and vi are transverse vector quantities and γij is taken to be transverse and
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trace-free, and represents gravitational waves. We use notation such that ∂i∂
i ≡ ∂2,

∂2∂2 ≡ ∂4, and ∂iγ∂
iγ ≡ (∂γ)2. We have assumed a general fluid with anisotropic

stress, π, whose scalar-vector-tensor decomposition is, at first order,

πij = (∂i∂j − 1
3
δij∂

2)Π + ∂(iΠj) +Πij . (3.70)

This line element leads to evolution equations for the perturbations which are mod-

ified from those of general relativity.

The propagation equation for gravitational waves [110,213] is given by

γ̈ij +

(
3 +

4αḢ

1 + 2αH2

)
Hγ̇ij − c2T

∂2γij
a2

=
8πG

1 + 2αH2
Πij , (3.71)

where c2T = c2(1 + Γ̇/(HΓ)) and Γ ≡ 1 + 2αH2/c2 =
√

1 + 32πGρα/3. Neglecting

anisotropic stress, this equation also follows from the action

ST =
1

2

∫
d3xdt a3Γ

(
γ̇2 − c2T

(∂γ)2

a2

)
, (3.72)

which will be useful below.

Defining c2s = δP/δρ and δ = δρ/ρ, the scalar perturbations obey the equations

[176,213,215]

δ′ = 3H(w − c2s)δ + (1 + w)(3ψ′ − θ) ,

θ′ +

(
(1− 3w)H +

w′

1 + w

)
θ + ∂2φ+

3∂2δP + 2∂4Π

3(1 + w)ρ
= 0 ,

8πGa4ρδ + 2A(−∂2ψ + 3H2φ+ 3Hψ′) = 0 ,

Aφ+ (B − 4αH′)ψ = −8πGa4Π , (3.73)

where a dash indicates differentiation with respect to conformal time, θ = ∇2v,

A = 2αH2 + a2 and B = 2αH2 − a2. The first two equations follow from the

conservation of the stress-energy tensor and are identical to those of GR. The latter

two follow from the 00- and ij-components of the field equations, respectively. For

completeness, we include also the equations for vector modes. They are given by

A∂2F ′
i + 16πG(1 + w)a4ρvi = 0 ,

v′i +

(
(1− 3w)H +

w′

1 + w

)
vi +

∂2Πi

2(1 + w)ρ
= 0 . (3.74)

As was the case for the background equations, the significance of deviations of
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Eqs. (5.38)-(3.74) from those of GR are determined by the size of ρGα (or equiva-

lently αH2) compared to unity, and hence tend to GR when this ratio is small.

3.2.2 Cosmology in the scalar-tensor version of 4D EGB

Let us now look at how the equations presented above arise within the scalar-tensor

version of 4D Einstein-Gauss-Bonnet given by the action (2.50). Solving this theory

with the line-element (3.64), one finds that the scalar field equation is given by

α(k + a2(H + ϕ̇)2)(ϕ̈+ Ḣ +H(ϕ̇+H)) = 0 , (3.75)

which is solved by

ϕ̇ = −H +
K

a
, (3.76)

where K is a constant.

In this formulation of the theory, the Friedmann equation is

H2 +
k

a2
=

8πG

3
ρ+ αϕ̇(2H + ϕ̇)

(
2

(
H2 +

k

a2

)
+ 2Hϕ̇+ ϕ̇2

)
, (3.77)

which, after substitution of the solution given in Eq. (3.76), results in

H2 +
k

a2
+ α

(
H2 − K2

a2

)(
H2 +

K2 + 2k

a2

)
=

8πG

3
ρ . (3.78)

It can clearly be seen that this only reduces to Eq. (3.65) when K2 = −k. For the

flat case, this requires K = 0, and for the positively curved case we need K = ±i.
Any other value, parametrized by K2 = −k + C, where C is a free parameter,

leads to an additional dark radiation term, such that the Friedmann equation can

be written as

H2 +
k

a2
+ α

(
H2 +

k

a2

)2

=
8πG

3
ρ+

αC2

a4
. (3.79)

It is interesting to note that in the positively-curved case a complex scalar field is

required to set C = 0 and recover the Friedmann equation of the original theory,

and the bouncing behaviour discussed above.

Finally, we note that for the perturbed line-element (3.68), taking Eq. (3.76) with

K = 0 also recovers the perturbed equations (3.73) of the original theory. In more

detail, the first-order equation of motion for the scalar field is

αK2
(
∂2(δϕ+ φ) + 3(ψ′′ − δϕ′′) + 3K(ψ′ + φ′)

)
= 0 , (3.80)
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which is automatically solved when K = 0 and thus does not constrain the field

fluctuation, δϕ. The first-order field equations are modified by the presence of a

non-zero C and become

8πGa4ρδ + 2A(−∂2ψ + 3H2φ+ 3Hψ′) = 4αK2
(
3K2φ+ 3K(ψ′ − δϕ′) + ∂2(ψ − δϕ)

)
,

Aφ+ (B − 4αH′)ψ = −8πGa4Π+ 2αK2(φ+ ψ) ,

A∂2F ′
i + 16πG(1 + w)a4ρvi = 2αK2∂2F ′

i , (3.81)

Aγ′′ij + 2H(a2 + 2αH′)γ′ij + (B − 4αH′)∂2γij = 8πGa4Πij + 2αK2(γ′′ij + ∂2γij) ,

where we have placed the K-dependent terms on the right-hand side, to clearly

demonstrate that these equations reduce to those of the original theory when K =

0. Thus, the fact that, in that case, at the linear level, the field perturbation is

undetermined is inconsequential, since it affects nothing else. In the general case,

in which K ̸= 0, the additional scalar degree of freedom is important and needs to

be taken into account for a full description of the solutions, in addition to the extra

terms depending on K. At the linear level, the additional field perturbations affect

only the scalar equations, effectively sourcing the gravitational field. A clear effect

of the K-dependent terms is on the propagation of gravitational waves, whose speed

is now modified, since the parameter Γ is then given by Γ ≡ 1 + 2α(H2 −K2/a2).

3.2.3 Cosmology in diffeomorphism breaking version of 4D

EGB

The version of 4D Einstein-Gauss-Bonnet that breaks temporal diffeomorphisms

differs from the original version by the introduction of a counter-term dependent on

the Weyl tensor of the spatial sections, Cijkl, and on the Weyl part of a combination

of extrinsic curvature tensors, Ki[jKk]l [259, 271]. For that reason, if those Weyl

components vanish, the solutions of this version of the theory are the same as those

for the original version.

Due to it having conformally flat spatial sections, the flat FLRW space-time is

a solution of this version of the theory obeying the same Friedmann equations as

the original version of the theory (Eq. (3.64), with k = 0). Vector and tensor

perturbations are expected to introduce a non-zero spatial Weyl tensor, and should

obey different equations from those of the original theory. While vectors were not
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studied yet, the evolution of tensor modes was derived in Ref. [271], and reads

γ̈ij +

(
3 +

4αḢ

1 + 2αH2

)
Hγ̇ij − c2T

∂2γij
a2

+
4α

Γa4
∂4γij = 0 . (3.82)

The additional term here has 4 spatial derivatives, and therefore modifies the disper-

sion relation of gravitational waves, adding a k4 term (here k is the Fourier mode)

and substantially modifying the predictions of the theory.

In addition to this, Ref. [272] has studied gravitational waves at second-order in

perturbations, as applied to the calculation of the bispectrum of tensor modes from

inflation. We do not go into detail here on that scenario, but it is clear from those

results that at second-order there are also contributions with 4 spatial derivatives,

which would not be present in the original or scalar-tensor versions of the theory.

In the next chapter we will return to cosmological discussions of 4DEGB as we

discuss observational constraints on the theory from cosmology.
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4 Observational Constraints on

the Regularized 4D

Einstein-Gauss-Bonnet Theory

As with any newly proposed theory of gravity, it is important to understand the

weak-field behaviour of 4D Einstein-Gauss-Bonnet. It is the weak-field limit to

which we have the most direct access, and in which the vast majority of experimental

and observational tests of gravitational theories have so far been performed. Such

a limit is sufficient to describe almost all astrophysical systems, with the notable

exceptions of compact objects and cosmology, which have been discussed in the

preceding sections of this thesis.

In order to explore the weak-field behaviour of 4D Einstein-Gauss-Bonnet we will

deploy the standard framework; a post-Newtonian expansion of the field equations

and equations of motion of the theory order-by-order in the typical velocity of bodies

in the system as a fraction of the speed of light, v/c. Such an expansion is the

bedrock of almost all weak-field gravity phenomenology, in the solar system as well

as in extra-solar systems such as binary pulsars [335]. We will also restrict ourselves

to the scalar-tensor version on this theory

S =
1

16π

∫
d4x

√
−g
[
R+α

(
4Gµν∇µϕ∇νϕ−ϕG+4□ϕ(∇ϕ)2+2(∇ϕ)4

)]
+SM . (4.1)

The dynamical problem of two gravitationally interacting massive bodies is con-

sidered in Section 4.3, where constraints are imposed on α from observations made

in relevant physical systems. In Section 4.4 we proceed to study the constraints that

can be imposed from observations of the propagation of electromagnetic and gravita-

tional radiation. Finally, in Section 4.5 we consider order-of-magnitude constraints

that can be imposed on regularized 4DEGB from cosmology, black hole physics,

and table-top experiments of gravity. Overall, we find that the LAGEOS satellites

provide the tightest bounds on the coupling parameter α, but that observations

based on early universe physics or gravitational waves from black hole mergers are
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ultimately likely to give even tighter constraints.

4.1 Post-Newtonian Expansion

We want to investigate the behaviour of the theory given in (4.1) under a post-

Newtonian expansion. This is an expansion of the metric about Minkowski space,

where the gravitational field is assumed to be weak and the motion of matter is

assumed to be slow compared to the speed of light.

We therefore consider a metric that can be written as

gµν = ηµν + hµν , (4.2)

where hµν is a perturbation. We proceed by using an expansion parameter ϵ, which

is taken to be of the typical order-of-magnitude of the 3-velocity v of a body in the

system under consideration (in most cases of interest ϵ ∼ v/c ∼ 10−5 to 10−4).

The different components of hµν can then be expanded as

h00 = h
(2)
00 + h

(4)
00 +O

(
ϵ5
)

h0i = h
(3)
0i +O

(
ϵ4
)

hij = h
(2)
ij +O

(
ϵ3
)
,

where Latin indices run over the three spatial dimensions, and where numbers in

brackets indicate the order of an object with respect to the parameter ϵ. Different

components of the perturbation are expanded to different orders in ϵ due to the role

each of them plays in the field equations and the equations of motion of particles

and bodies. Here we have included the terms that are required to reproduce the

leading-order Newtonian equations, and the next-to-leading-order post-Newtonian

terms, for objects with time-like or null trajectories.

Matter fields in this approach are expanded such that

v = v(1), ρ = ρ(2), p = p(4), Π = Π(2) ,

where ρ is the density of mass, p is the isotropic pressure, and Π is the internal

energy per unit mass (such that energy density is given by µ̃ = ρ(1 + Π)).

We also need to use the fact that time derivatives add an extra order of ϵ, compared
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to spatial derivatives of the same quantity, such that

∂/∂t

∂/∂xi
∼ ϵ . (4.3)

This equation encodes the “slow motion” aspect of the expansion. We take this rule

to apply to all fields, not just those directly associated with matter, which extends

this notion from the motion of bodies themselves to the gravitational fields they

generate.

The only remaining object that needs to be perturbed is the scalar field ϕ, which

we now write as

ϕ = ϕ̄+ δϕ (4.4)

where ϕ̄ ∼ ϵ0 ∼ 1 is the constant background value of ϕ, and where δϕ ∼ ϵ2 is a

perturbation.

Everything described in this section is entirely standard in the post-Newtonian

approach to weak-field gravity, and is explained in great detail in (for example)

Ref. [336], to which the reader can refer for further explanation and justification.

We will use this formalism in the following section to construct the slow-motion,

weak-field metric for 4DEGB gravity.

4.2 Weak Field Gravity

The first task to perform in assessing the observational viability of 4DEGB in the

weak field regime is to expand the field equations in the smallness parameter ϵ. The

results can then be solved order-by-order, to build up a perturbative description of

the gravitational field that can be used to compute observables.

4.2.1 Solving the Perturbed Field Equations

The leading-order part of the 00 field equation (5.16) occurs at order ϵ2, and can be

written

∇2h
(2)
00 = −8π ρ , (4.5)

which under asymptotically flat boundary conditions integrates to

h
(2)
00 = 2U = 2

∫
ρ

|x− x′|
d3x′ , (4.6)
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where the last equality serves to define the Newtonian gravitational potential U =

U(x), and where the mass density should be taken to be a function of the primed

coordinate position (such that ρ = ρ(x′)). This metric perturbation is sufficient to

describe all gravitational physics at the leading-order Newtonian level of approxi-

mation, for bodies following time-like geodesics.

To determine the trajectories of rays of light to Post-Newtonian order we require

h
(2)
ij , as well as h

(2)
00 . This can be determined from the leading-order part of the ij

field equations (5.16), which are at order ϵ2 and read

∇2h
(2)
ij = −8π ρ δij , (4.7)

and which have the solution

h
(2)
ij = 2U δij = h

(2)
00 δij . (4.8)

Equation (4.7) is derived by choosing a gauge such that 2hµi,µ − hµµ,i = 0, which

can be retrospectively shown to be satisfied for the solutions we find.

The post-Newtonian equations of motion require knowledge of h
(3)
0i and h

(4)
00 , as

well as h
(2)
00 and h

(2)
ij . The equation for h

(3)
0i can be found by taking the leading-order

contribution to the 0i field equations:

∇2h
(3)
0i + U,0i = 16π ρ vi , (4.9)

where the gauge condition 2hµ0,µ−h
µ
µ,0 = −h00,0 has been used, as well as the lower-

order solutions above. Again, this gauge condition can be retrospectively verified

by the solutions it generates. The asymptotically flat solution to Eq. (4.9) is

h
(3)
0i = −7

2
Vi −

1

2
Wi (4.10)

where the post-Newtonian gravitational potentials Vi and Wi are given by

Vi =

∫
ρ vi

|x− x′|
d3x′ (4.11)

Wi =

∫
ρ [v · (x− x′)](xi − x′i)

|x− x′|3
d3x′ , (4.12)

and where various manipulations have been performed. The mass density ρ and the

3-velocity field v in these equations should be taken to be functions of the primed

coordinate position x′.
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It now remains to determine h
(4)
00 . In order to do this we use the scalar field

propagation equation (2.56), which has its first non-trivial part at order ϵ4:

δϕ,ij δϕ,ij −
(
∇2δϕ

)2
= U,ij U,ij −

(
∇2U

)2
. (4.13)

Imposing sensible boundary conditions, this equation admits the solutions

δϕ = ±U . (4.14)

This is remarkably simple, and gives the interesting interpretation that the value of

the gravitational scalar ϕ at a point in space-time is simply equal to the value of

the Newtonian gravitational potential (up to a sign).

Using Eq. (4.14), we can write the 00 field equation at order ϵ4 as

∇2
(
h
(4)
00 + 2U2 − 4Φ1 − 4Φ2 − 2Φ3 − 6Φ4

)
= ±αG(4) , (4.15)

where

Φ1 =

∫
ρ v2

|x− x′|
d3x′ (4.16)

Φ2 =

∫
ρU

|x− x′|
d3x′ (4.17)

Φ3 =

∫
ρΠ

|x− x′|
d3x′ (4.18)

Φ4 =

∫
p

|x− x′|
d3x′ (4.19)

and where the order ϵ4 part of the Gauss-Bonnet invariant is written as

G(4) = 8
(
U,ij U,ij −

(
∇2U

)2)
.

Integrating Eq. (4.15) gives the solution

h
(4)
00 = −2U2 + 4Φ1 + 4Φ2 + 2Φ3 + 6Φ4 ∓

( α
4π

)
ΦG , (4.20)

where we have introduced the new potential

ΦG =

∫
G(4)

|x− x′|
d3x′ . (4.21)

This equation represents a new type of gravitational potential that is sourced by
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the Gauss-Bonnet invariant itself (in the same way that the mass density ρ sources

the Newtonian potential U). The ∓ sign in Eq. (4.20) has its origin in the ± that

occurs in Eq. (4.14).

Comparison of the results above with the PPN test metric gives the gravitational

parameters of this theory as

β = γ = 1 (4.22)

and

ξ = α1 = α2 = α3 = ζ1 = ζ2 = ζ3 = ζ4 = 0 , (4.23)

exactly as in GR [335]. The only difference is the appearance of the potential ΦG in

Eq. (4.20), which has no counterpart in the standard PPN metric. In what follows

we will determine the effects that this new post-Newtonian gravitational potential

has on observables, and use these results to place observational constraints on the

coupling parameter α.

4.2.2 The N-Body Problem

Let us now consider a collection of point sources, as the origin of the gravitational

field. The energy density of such a group of sources can be written as

µ̃ =
∑
A

mA
dτA
dt

δ3(r− rA)√
−g

, (4.24)

where mA is the rest mass of particle A, τA is the proper time along its world-line,

and we have taken p = 0.

If we now recall that µ̃ = ρ(1 + Π), we find that we can write

U =
∑
A

mA

|x− xA|
, (4.25)

and

Φ1 =
∑
A

mAv
2
A

|x− xA|
(4.26)

Φ2 =
∑
A

mAUA

|x− xA|
(4.27)

Φ3 = −1

2
Φ1 − 3Φ2 (4.28)

Φ4 = 0 , (4.29)
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where UA is the value of U at particle A, without including its own infinite contri-

bution to this quantity.

The remaining vector post-Newtonian potentials are given by

Vi =
∑
A

mAvAi

|x− xA|
(4.30)

Wi =
∑
A

mAvA · (x− xA)(x− xA)i
|x− xA|3

. (4.31)

It now only remains to calculate ΦG, which is done in Appendix 4.A, and gives

ΦG = −32π

(
1

2
|∇U |2 − ψ1

)
, (4.32)

where

|∇U |2 =
∑
A,B

mAmB(x− xA) · (x− xB)

|x− xA|3|x− xB|3
(4.33)

ψ1 =
∑

A,B ̸=A

mAmB(x− xA) · (xA − xB)

|x− xA|3|xA − xB|3
, (4.34)

and where infinite contributions have again been removed. The potentials listed

in Eqs. (4.25)-(4.32) can be substituted back into the expressions derived in the

previous section to find the relevant expressions for the components of the metric

perturbation hµν at each order of interest.

4.3 2-Body Dynamics

We will find below that a promising route for constraining the 4DEGB theory with

observations involves the bound orbits of two massive bodies. We will therefore

begin this section by calculating the Lagrangian and Hamiltonian formulation of

this problem.

4.3.1 Relativistic Lagrangian and Hamiltonian

To begin with, let us consider a single time-like particle, which we will label 1. The

Lagrangian that can be used for investigating the motion of this particle can be

written L1 = −m1dτ1/dt, where m1 is its mass and τ1 is the proper time measured

along its worldline. The Lagrangian L1 gives the force on particle 1 by taking the

partial derivative with respect to the field point: F1 = (∂L1/∂x) |x=x1 . If instead

90



4 Observational Constraints on the Regularized 4D Einstein-Gauss-Bonnet Theory

we want a Lagrangian that will be valid for more than one particle then we can

construct an L for which the force on the ith particle will be given by Fi = ∂L/∂xi .

For a two-body system this Lagrangian is given to the required order of accuracy

by

L =− (m1 +m2) +
1

2
m1v

2
1 +

1

2
m2v

2
2 +

m1m2

r12
(4.35)

+
m1m2

2r12

[
3(v21 + v22)− 7v1 · v2 − (v1 · n12)(v2 · n12)

]
+

1

8
(m1v

4
1 +m2v

4
2)−

m1m2(m1 +m2)

2r212

(
1± 4α

r212

)
,

where r12 = |x1 − x2| and n12 = (x1 − x2)/r12, and which can be seen to reduce to

the usual expression from GR in the case α = 0 [337].

This Lagrangian can be conveniently re-written by choosing a frame such that

m1v1+m2v2 = 0, which corresponds to the centre-of-momentum frame at Newtonian-

level accuracy. If we also define the total and reduced masses by M = m1 +m2 and

µ = m1m2/M , and the relative velocity by v = v1 − v2 then we get

L = L(2) + L(4) (4.36)

where L(2) (the Lagrangian at the Newtonian order of approximation) is given by

L(2) = −M +
1

2
µv2 +

µM

r
, (4.37)

and L(4) (the first post-Newtonian correction) is

L(4) =
µM

2r

[(
3 +

µ

M

)
v2 +

µ

M

(v · r)2

r2

]
+
µ

8

(
1− 3

µ

M

)
v4 − µM2

2r2

(
1∓ 4α

r2

)
, (4.38)

where we have written r = x1 − x2 and r = |r|.
Using the expressions above for the two-body Lagrangian, we can construct the

corresponding Hamiltonian and write it as

H = H(2) +H(4) , (4.39)
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where the Newtonian-level contribution is given by

H(2) =M +
p2

2µ
− µM

r
(4.40)

and the first post-Newtonian contribution is given by

H(4) =− 1

2r

[
3
(M − 2µ)

µ
p2 + 7p2 + (p · r̂)2

]
− (M − 3µ)

8Mµ3
p4 +

M2µ

2r2

(
1∓ 4α

r2

)
, (4.41)

where the relative momentum is p = p1 = −p2, with magnitude p = |p|. We will

now use this Hamiltonian to calculate the periapsis advance for two bodies in closed

orbits.

4.3.2 Advance of Periapsis

We can calculate the advance of periapsis using the Hamilton-Jacobi approach,

which has an action

S(r, φ, t) = Sr(r) + Sφ(φ) + St(t)

= Sr + Jφ− Et , (4.42)

where J is angular momentum and E is energy. The radial momentum can be

extracted from the radial part of this action using pr = ∂Sr/∂r and the angular

coordinate φ can be found using the equation for the generalized coordinate: φ =

−∂Sr/∂J + constant. This gives the angle φ (up to a constant) as

φ = −
∫
∂pr
∂J

dr , (4.43)

where pr can be determined using the Hamiltonian (4.39).

Energy in this system is conserved, so H = E = constant. Solving Eq. (4.39) for

pr therefore gives

p2r = −A+
B

r
− J2

r2
+

6M2µ2

r2

(
1± 2α

3r2

)
, (4.44)
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where we have performed a gauge transformation so that r → r + µ/2, and where

A = −2(E −M)µ+O(ϵ4)

B = 2Mµ2 +O(ϵ4) .

The higher-order parts of these equations are not made explicit, as they are not

required in the final result.

Using Eq. (4.44) in Eq. (4.43) gives, to Newtonian order, the usual result:

φN = cos−1

(
2J2/r −B√
B2 − 4AJ2

)
, (4.45)

where the constant of integration has been chosen so that the moment of periapsis

occurs at φ = 0, and where we have neglected the last term in Eq. (4.44), which is

small compared to the first three.

The relativistic correction to φ can then be calculated using

φR = −
∫
∂p

(4)
r

∂J
dr

∣∣∣∣∣
A=A(2), B=B(2)

. (4.46)

Here there is no need to include the ϵ4 parts of A and B, as the higher-order parts

in the first two terms contribute in exactly the same way as the lower-order parts

do to φN, and the higher-order parts included in the last term would be of order ϵ6.

We find that Eq. (4.46) evaluates to

φR =
3M2µ2

4J6

[
4J4 ± α(5B2 − 4AJ2)

]
φN (4.47)

+ periodic terms .

The constant of integration has been chosen here so that φR = 0 at periapsis (i.e.

when φN = 0). The periodic terms in this expression are omitted as they do not

produce a secular change that can accumulate.

To find the precession that occurs every orbit, we can put φN = 2π into Eq.

(4.47), and neglect the periodic terms. This gives

δφ =
6πM

a(1− e2)

[
1± α(4 + e2)

a2(1− e2)2

]
, (4.48)

where a is the semi-major axis of the orbit and e is the eccentricity. In deriving

this expression we have used the Newtonian results J2 = Mµ2a(1 − e2) and E =
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M −Mµ/2a. This equation gives the contribution from the Gauss-Bonnet term to

the advance of periapsis of a bound orbit, and can be seen to reduce to the usual

expression from GR when α = 0 (see e.g. [337]).

4.3.3 Observational Constraints

Let us now consider observational constraints that can be imposed on the coupling

parameter α, using observations of closed orbits of time-like objects. We will first

consider the classical test of Mercury’s perihelion precession, before moving on to

the orbits of satellites around the Earth, and the orbits of binary pulsars.

Perihelion Precession of Mercury: The detection of the anomalous perihelion

precession of the orbit of Mercury pre-dates the discovery of relativistic gravity as

discussed in the introduction, and was one of the original tests used to validate GR.

It therefore has important pedagogical importance.

Contributions to the perihelion precession of Mercury come from the precession

of the equinoxes of the coordinates’ system (∼ 5025′′ per century), from the gravi-

tational influence of the other planets (∼ 531′′ per century), and from the non-zero

quadrupole moment of the Sun (∼ 0.025′′ per century). A precise determination

of these contributions, analyzed together with the ephemeris of Mercury, gives an

anomalous deficit of ∼ 43′′ per century. This can be compared with the prediction

from Eq. (4.48) to constrain our theory.

For definiteness, we use the anomalous perihelion precession determined by Pitjeva

and Pitjev [338]:

δφ− δφGR = (−0.0020± 0.0030) ′′ per century , (4.49)

where δφGR = 42.98 arcseconds per century is the famous prediction from GR.

Other published values for this quantity exist in the literature, and can be found e.g.

Ref. [339]. Taking the mass of the Sun to be 1.9884× 1030 kg, the mass of Mercury

to be 3.3011 × 1023 kg, and their orbit to have semi-major axis a = 57, 909, 050 km

and eccentricity e = 0.205 630, we find that Eq. (4.49) implies that the coupling

parameter of 4DEGB is constrained to be

|α| = |(−3.54± 5.31)| × 1016m2 . (4.50)

Alternate observations will of course give alternative bounds on α, but for errors on

δφ of the order of ∼ 0.01 arcseconds per century we can see that the constraints are
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going to be at the level of |α| ≲ 1017m2.

LAGEOS Satellites: The LAGEOS satellites are two man-made satellites, which

are spherical in shape with a diameter of 60 cm, and which orbit the Earth at

an altitude of approximately 6 000 km. Lasers are reflected off the satellites from

ground-based stations, which allow for precise tracking of their orbits. One of the

many benefits of this is that the gravitational field of the Earth can be measured to

very high accuracy.

Using 13 years of tracking data of the LAGEOS satellites, the precession of the

periapsis of the LAGEOS II satellite was measured by Lucchesi and Peron to be [340]

δφ =
[
1 + (0.28± 2.14)× 10−3

]
δφGR ,

where δφGR is the prediction from GR (i.e. Eq. (4.48) with α = 0). Taking the

mass of this satellite to be 405.38 kg, and taking its orbit to have a semi-major axis

a = 5.697 × 106m and eccentricity e = 0.0135, this corresponds to a bound on the

4DEGB coupling parameter of

|α| = |(0.23± 1.74)| × 1010m2 , (4.51)

where we have taken the mass of the Earth to be 5.9722× 1024 kg. This is a much

tighter bound than that obtained from the perihelion precession of Mercury, which

we take to be due to the much smaller orbital radius of the LAGEOS satellites

(∼ 106m, compared to ∼ 1010m for Mercury). This being the case, the 1/r4 form

of the gravitational potential in Eq. (4.32) then suppresses the contribution of the

new effects in 4DEGB by a much smaller amount.

Precession of S2 around Sgr A∗: The motions of stars orbiting the central black

hole of the Milky Way galaxy have now been observed for 27 years, which has

enabled very accurate determinations of their orbital parameters. The GRAVITY

collaboration has detected the precession of the star S2 to be [341]:

δφ = [1.10± 0.19] δφGR , (4.52)

where δφGR = 12.1′ per orbit is the prediction from GR. We find that this implies

|α| = |(2.17± 4.42)| × 1025m2 , (4.53)
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where we have taken the mass of the central black hole to be 4.261 × 106M⊙, the

mass of S2 to be negligible, and its orbit to have eccentricity e = 0.884649 and semi-

major axis a = 1.54 × 1014m (from an angular size of 125.058 mas and a distance

of 8246.7 pc) [341].

This bound is weaker than that obtained from Mercury and LAGEOS, but is

obtained in a very different environment. Further observations of S2, and other

stars orbiting Sgr A∗, may provide slightly better constraints in future, but should

not be expected to improve to the level of those given by LAGEOS as the a2 sup-

pression in Eq. (4.48) is orders of magnitude larger in the present case. We note

while canonical scalar-tensor theories (such as Brans-Dicke) have black hole solutions

with a weak field that is identical to GR [342], this is not expected to be the case

in 4DEGB. This is due to the form of the scalar field propagation equation (2.56),

which is sourced by the Gauss-Bonnet curvature-invariant of the space-time, and

not its energy-momentum content. The scalar field must therefore be non-constant,

and satisfy Eq. (4.13) in the weak field limit, independent of whether the gravity is

due to a black hole or matter.

Binary Pulsars: Binary pulsars are two-body systems that contain at least one

pulsar (i.e. a rotating neutron star that emits regular pulses of radiation). These

systems are excellent testing grounds for relativistic gravitational physics, as they

allow precise data about orbits to be extracted from systems in which the bodies

move at very high velocities.

The first and most famous, binary pulsar system to be found was PSR B1913+16

[343], also known as the Hulse-Taylor binary (after its discoverers). This system

provided the first indirect evidence for the existence of gravitational waves, as the

period of its orbit changed over time due to their emission. In general, binary

pulsars provide the possibility to constrain relativistic gravity through five different

post-Keplerian effects: the rate of advance of periapsis, the rate of change of orbital

period, the gravitational redshift and two types of Shapiro time delay effect.

The most promising binary pulsar system for constraining 4DEGB is PSR J0737-

3039A/B [344], also known as the double pulsar. In this system both bodies were (for

a time) emitting pulses of radiation that were visible from Earth. In addition, the

system was oriented edge-on, which meant that all five post-Keplerian parameters

were visible, as well as the mass ratio of the pulsars being determinable.

As we will discuss later, the Shapiro time delay effects are unaltered in 4DEGB

from their values in GR. The advance of periapsis, on the other hand, can be seen

from (4.48) to be dependent on the coupling parameter α. We can therefore use the
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mass ratio, together with observations of these two relativistic effects, to determine

the masses of both pulsars together with the value of α (as there are three observables

and three unknowns). Using the mass ratio and the periapsis advance to determine

the masses, Kramer et al. find the time delay parameter r to be given by [345]

r = (1.009± 0.055) rGR , (4.54)

where rGR is the value predicted in GR. Assuming this combination of observables

leads to a similar constraint on the advance of periapsis of the system gives the

following constraint on the coupling parameter:

|α| = |(0.4± 2.4)| × 1015
m2

sin i
, (4.55)

where i is the inclination angle of the system, where the mass ratio has been taken

to be 1.0714 and the semi-major axis and ellipticity have been taken to be given

by a = 1.415032 c s−1/sin i and e = 0.087777. This gives a best estimate for the

constraints available from these observations to be |α| ≲ 1015m2, which is better

than that available from Mercury, but worse than the constraints available from

LAGEOS.

We note that while the structure of neutron stars in 4DEGB has not yet been

studied, we still expect the analysis performed above to be applicable to the weak

field of such bodies. This is despite non-perturbative effects, such as “spontaneous

scalarization”, being known to exist in some scalar-tensor theories [103]. This is

because the only degree-of-freedom in our weak-field analysis that could be altered

by such non-linear physics is the mass of the body, which is already treated as

a nuisance parameter when extracting constraints from data. In particular, the

coupling constant α cannot be dependent on environment, and so the cannot be

affected by non-linearities in the same way as the coupling function ω(ϕ) of canonical

scalar-tensor theories.

4.4 Propagation of Radiation

As well as the motion of massive bodies, there are also a number of observational

tests of gravity that rely on the propagation of radiation. In the case of isolated,

weakly gravitating systems, two of the most widely used tests of this type are grav-

itational lensing and Shapiro time delay. More recently, there is also the direct

detection of gravitational waves by LIGO/VIRGO.
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4.4.1 Lensing and Time Delay

The first test of relativistic gravity to be performed after the publication of GR was

the observation of the gravitational lensing of light by the Sun, which is predicted by

Einstein’s equations to be 1.75′′ for a null trajectory that grazes its edge. This effect

was observed by Eddington in May of 1919, during his famous trip to Pŕıncipe, and

was of great importance in establishing the validity of GR. Today, this same effect is

measured using Very Long Baseline Interferometry, with results from around 2500

days of observations taken over a period of 20 years giving the constraint [346]

θ = (0.99992± 0.00023) θGR , (4.56)

where θ is the deflection angle, and θGR = 1.75′′ is the prediction from GR. This is

one of the highest precision results available on relativistic gravity, and is used to

place constraints on the post-Newtonian parameter γ to around 1 part in 104 of its

value in GR.

Even tighter constraints on γ are available from observations of the Shapiro time

delay effect, which accounts for the deflection in time of a radio signal as it passes

through a gravitational field. The most constraining observation of this effect in the

Solar System to date was from radio signals sent to the Cassini spacecraft on its

mission to Saturn. These give [347]

∆t = (1.00001± 0.00001)∆tGR , (4.57)

where ∆tGR is the expected size of the effect from GR. This gives a bound on γ of

being within 1 part in 105 of its expected value, which is currently the best constraint

available on this quantity (or on any post-Newtonian parameter associated with

conservative theories of gravity).

We note that these observations, though extremely precise, provide no new con-

straints on the coupling parameter α. This can be seen from the results presented in

Section 4.2, where the order ϵ2 parts of both the 00 and ij components of the metric

are identical to the form they take in GR. The equations of motion of null particles

are only sensitive (at leading-order) to gravitational potentials that appear in these

components of the metric at this order [335], so the lensing and time delay effects in

4DEGB should be expected to be exactly the same as they are in GR. This means

that neither effect can be used to constrain α, and all that can be said is that the

results quoted in Eqs. (4.56) and (4.57) are consistent with this theory.
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4.4.2 Gravitational Waves

A further constraint on α comes from the propagation of gravitational waves from

the double neutron star collision that resulted in the signal GW170817 [348].

As discussed in the last chapter, the spatially flat FLRW metric is a solution to

the field equations, but results in an altered Friedmann equation:

H2 + αH4 =
8π

3
ρ+

C4

a4
, (4.58)

where H = ȧ/a is the Hubble rate, ρ is the energy density, a is the scale factor, and

C is a constant of integration.

For Horndeski theories we know that the propagation speed of gravitational waves

is [105]

c2T =
G4 −X

(
ϕ̈G5,X +G5,ϕ

)
G4 − 2XG4,X −X

(
Hϕ̇G5,X −G5,ϕ

) (4.59)

where X = −1
2
∂µϕ∂

µϕ. The reader may note that only G4 and G5 are required to

calculate the gravitational wave speed.

Recalling that our theory is a subset of Horndeski with G2 = 8αX2, G3 = 8αX,

G4 = 1 + 4αX, G5 = 4α logX, we can now calculate cT in 4DEGB. We find this to

be given by

c2T = 1 +
4α
(
Ḣ + C2

a2

)
1 + 2α

(
H2 − C2

a2

) = 1 +
Γ̇

HΓ
, (4.60)

where Γ = 1+2α(H2−C2/a2) and where we have used X = 1
2
ϕ̇2 and ϕ̇ = −H+C/a

in a Friedmann background. We note that the speed of propagation of gravitational

waves in an FLRW cosmology in 4DEGB is not equal to the speed of light, but that

it reduces to the speed of light in Minkowski space (i.e. when H = C = 0).

Now, the electromagnetic counterpart to GW170817 indicates that the deviation

in the speed of gravitational waves from that of light must be less than one part in

1015 [349–353]. From Eq. (4.60) this leads to the rather weak constraint∣∣∣∣∣ Γ̇

HΓ

∣∣∣∣∣ < 10−15 , (4.61)

which, taking C = 0 for simplicity, implies

|α| ≲ 1036m2 , (4.62)
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where we have taken Ḣ ≈ H2 ≈ 5.8 × 10−36 s−2. Taking C ̸= 0 will change this

constraint, and will correspond to cosmologies that contain a period in which the

free kinetic energy of the scalar field dominates over matter. This is an intriguing

possibility, which often occurs in the cosmologies of scalar-tensor theories of gravity,

but which we will not consider further here.

The result (4.62) agrees with similar estimates in Ref. [271], and can be seen to be

considerably weaker than the constraints imposed from the trajectories of massive

bodies studied in Section 4.3. It therefore appears to provide an exception to the

rule that GW170817 tightly constrains Horndeski theories with non-trivial G4 and

G5 [351–353].

4.5 Other tests

We have so far considered constraints that are available on the 4DEGB theory from

bound orbits of massive bodies, and from the propagation of radiation. In this

section we will discuss some other tests of gravity that are available, and what they

may imply for 4DEGB.

4.5.1 Black Hole Shadows

The shadow of the super-massive black hole of M87 has recently been observed

[354, 355], and can be used to constrain deviations from GR [77, 356–358]. Here we

will recap what this implies for 4DEGB, following Refs. [113–115,140].

Firstly, recall that the simplest static, spherically symmetric solution of 4DEGB

has line-element

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 , (4.63)

where

f(r) = 1 +
r2

2α

(
1−

√
1 +

8Mα

r3

)
, (4.64)

and where M is a constant mass parameter. The scalar field profile is given by

ϕ′ =
1−

√
f(r)

r
√
f(r)

. (4.65)

This is the same solution as given in chapter 3 in Eqs. (3.35) and (3.34), but

reproduced here for the convenience of the reader.

The radius of the photon sphere, rph, for an object described by (4.63), is given by
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the appropriate solution of rf ′(r) = 2f(r), and the corresponding black hole shadow

radius is well approximated by RSh = rph/
√
f(rph). This all gives

RSh

M
=

3 + δ
2
3

δ
1
3

(
1 +

(3 + δ
2
3 )2

2βδ
2
3

[
1−

√
1 +

8βδ

(3 + δ
2
3 )3

])− 1
2

(4.66)

with δ = −4β +
√

16β2 − 27 and β = α/M2. It can be shown that the radius

of the shadow monotonically decreases with α. Now, the black hole M87∗ has

been measured by the Event Horizon Telescope to have a shadow of size RSh =

(4.96 ± 0.75) × 1013 m. Using Eq. (4.66), this value, together with a value for the

mass of the black hole, can be used to infer bounds on α.

Observations of stellar dynamics around M87∗ imply a mass of M = 6.14+1.07
−0.62 ×

109M⊙ [359], which in turn allows one to derive the constraint

α = (−0.67± 1.44)× 1026m2 . (4.67)

Alternatively, measurements of gas dynamics imply M = 3.45+0.85
−0.26 × 109M⊙ [360],

which gives16

α = (−1.26± 0.80)× 1027m2 . (4.68)

Both cases prefer negative values for the Gauss-Bonnet coupling, but clearly place

much looser constraints than those obtained in Section 4.3.

In addition to the constraints above, further bounds can be placed on positive

values of α by the requirement for the existence of an event horizon and a photon

sphere. These require α < M2 and α < 3
√
3M2/4, respectively. Since we observe

the shadow, this alone can be used to place the constraints α ≤ 1.07 × 1026 m2

for the stellar dynamics case, and α ≤ 3.37 × 1025 m2 for the gas dynamics mass

measurement.

We note that the consequences of 4DEGB gravity for black holes depend greatly on

the ratio α/M2, which for M87∗ is not large enough to place competitive constraints

on α. However, smaller black holes will result in larger effects, due to the existence

of M in the denominator of this ratio. This means it may be possible to achieve

α ≲ 106 m2 from observations of a solar mass black hole, which could be possible

through an analysis of gravitational wave emission from binaries.

A similar analysis could be performed for the recently observed shadow of the

16Note that the masses reported in Refs. [359, 360] are not those written here, as they assumed
a distance to M87∗ of D = 17.9 Mpc. This does not agree with measurements made by the
Event Horizon Telescope, and was corrected to the values presented above in Ref. [355].
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SgrA* black hole in the center of the Milky Way, using the results from Ref. [32].

However, we expect constraints from this analysis to be on the order of α ≲ 1020,

and therefore not relevant when compared e.g. with the ones obtained from the

LAGEOS satellites.

Finally, we note that an analysis of rotating solutions in 4DEGB should be per-

formed in order to properly understand the shadows of realistic astrophysical black

holes. Our intuition from GR is that the consequences of rotation should be small

in this situation, but this should be verified to be true in 4DEGB too.

4.5.2 Black Hole Binaries

The gravitational waves events that have been observed by the LIGO/VIRGO col-

laborations, that resulted from the inspiral and merger of binary black holes, offer

the possibility of imposing tight constraints on modified theories of gravity [361–364].

Here we will investigate the possible bounds that such observations could impose on

the coupling constant α, using simple physical arguments (as in Ref. [364]). This

is not intended as a replacement for more sophisticated studies of these events in

4DEGB, which will require complicated numerical implementation, but to gain some

insight into the constraining power that they offer.

The black hole described by the metric function (4.64), with mass mi, has an

event horizon located at

rH(mi) = mi +
√
m2

i − α . (4.69)

Let us consider the merger event that led to GW150914, using this radius as an

approximate size for the black holes17. The frequency at which this waveform has

maximum amplitude is around fGW ∼ 150Hz, and the chirp mass of the black holes

is inferred to be Mc ∼ 30M⊙ (assuming the two black holes are of equal mass,

this corresponds to masses m1 ∼ m2 ∼ 35M⊙) [361–364]. This value of fGW is

taken directly from the data, and does not require a particular theory of gravity in

order to be determined. The value of Mc can be determined from the inspiral, and

requires only weak gravity in order to be discovered. We therefore expect the orders

of magnitude quoted here to be correct for both GR and 4DEGB.

Now, using a weak field analysis it can be shown that at the time of peak amplitude

17Rotation, and the perturbations due to the other black hole, will change this value, but we
expect it be correct to an order of magnitude.
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the two bodies have an orbital separation of

R =

(
m1 +m2

π2f 2
GW

)1/3

∼ 350km , (4.70)

where the numerical value is obtained using the numbers above. In order to quantify

the closeness of the two objects, relative to their natural gravitational radius, we

introduce the compactness ratio:

R =
R

rH(m1) + rH(m2)
. (4.71)

Assuming both masses to bemi ∼ 35M⊙, and imposingR > 1, so that the two black

holes are not overlapping, we obtain a lower bound on negative values of the coupling

parameter of α ≳ −1010m2. We can gain an upper bound on α by requiring that rH

is a real number. For this same black hole masses, this gives α ≲ 109m2. An order

of magnitude estimate of the constraints that may be available from GW150914 is

therefore

−1010m2 ≲ α ≲ 109m2 . (4.72)

This is among the tightest constraints we have found.

Of course, there are also many other gravitational wave events that could also

be used for our current purpose, that have been detected since the discovery of

GW150914. One of the more promising of these is GW170608 [365], which is the

lowest mass binary black hole merger event that has been confirmed to date. Fol-

lowing through the same logic as above, this system could be expected to give the

constraint −1010m2 ≲ α ≲ 108m2, which can be seen to be marginally tighter. If

the sources of GW190814 are both confirmed to be black holes [366], this would give

α ≲ 107m2. Combining constraints from multiple systems, or future events, may

also improve on the constraining power of these observations.

We reiterate that this is only a rough estimate of the bounds that may be available

from these systems, and that it may well be possible to gain significantly tighter

constraints using a more thorough numerical relativity treatment. This will be a

significant challenge to implement, however, and will be left for subsequent studies.

In particular, as well as assuming the validity of weak-field treatments, we have

neglected spin and assumed circular orbits. Such assumptions could be removed in

proper numerical studies.

103



4 Observational Constraints on the Regularized 4D Einstein-Gauss-Bonnet Theory

4.5.3 Table-Top Tests of Gravity

Due to the r−4 scaling of the extra terms that appear in the metric in 4DEGB, mea-

surements of gravity on small scales offer the possibility of imposing tight constraints

on the theory. Of particular interest in this regard are the so-called “tabletop” tests

of gravity. These are gravitational physics experiments that seeks to directly mea-

sure gravitational effects in the laboratory, and which are the modern counterparts

of the Cavendish experiment.

Tabletop tests of gravity most commonly test for deviations from the inverse

square law by modelling extra gravitational forces as being due to an additional

Yukawa-type potential. However, and of more relevance for our work, there have

also been studies that look for additional power-law terms, of the form [367–369]

V =
m1m2

r

(
1− An

rn

)
, (4.73)

where no sum is implied over n. Such a potential can be compared to Eq. (4.35),

which gives

V ≈m1m2

r

[
1∓ 2α(m1 +m2)

r3

]
, (4.74)

where we have kept the additional term from 4DEGB and neglected all other

post-Newtonian terms. It can be seen that Eqs. (4.73) and (4.74) give A3 =

±2α (m1 +m2).

Now, the observational constraints from these experiments currently yield bounds

of order A3 ≲ 2.2× 10−14m3 [369], which from the above implies

|α| ≲ 1016m2 , (4.75)

where we have used a value of ∼ 1g for the masses involved in the experiment.

This bound, while being one of the more promising we have found in this chapter,

should be taken with a large pinch of salt. There are a number of reasons for this.

Firstly, the experiments themselves do not involve two point-like masses, but are

instead much more complicated set-ups. In particular, the study in Ref. [369] is

based on a torsion balance in which one disk of metal with holes in is hung directly

above two other disks with holes. The holes in these disks are the “masses”, and

the torque on the top disk is measured as the bottom disks rotate. A calculation

involving multiple extended objects should therefore be performed to give more
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precise results.

Secondly, the extra “potential” in Eq. (4.74) is a post-Newtonian term, rather

than the Newtonian-level term. There is a gauge dependence on the 00 component

of the metric at this level of accuracy, which introduces an extra degree of ambiguity,

and which does not occur at the Newtonian level. This is not to say that this term

does not affect the equations of motion of time-like objects in the same manner as a

Newtonian potential (it does), but that one would need to make sure that the gauge

choice that we used to calculate this metric corresponds to the coordinates used by

the experimentalists in a sensible way, in order to make precise statements.

Giving thorough answers to the questions above would require a more detailed

study of the experimental set-up that is used in Ref. [368, 369], which we leave for

future work. Despite these issues, we nevertheless expect the bound in Eq. (4.75)

to give a representative order of magnitude for what these experiments should be

able to achieve. This is a bound that is competitive with those achievable from

analyzing the orbit of Mercury, but is considerably weaker than those from the

LAGEOS satellites and binary black hole systems.

4.5.4 Primordial Nucleosynthesis

If we take C = 0, then it can be seen from the Friedmann equation (4.58) that the

size of corrections to the Hubble rate of standard cosmology is controlled by the

combination αH2, with the H4 term in Eq. (4.58) becoming dominant if αH2 ≫ 1.

However, given that H0 ≈ 2.4 × 10−18 s−1 at the present time, this suggests that

a very large value of α would be required to make any noticable difference to the

current rate of expansion of the Universe.

For example, for the correction term to be of order unity would require α ∼
1052m2. This means that any constraints from the recent expansion history of

the universe, or from structure formation, are likely to be extremely weak. This is

confirmed in Ref. [176], where structure formation in 4DEGB leads to the constraint

α ≲ 1050m2. To do better than this we must consider the evolution of the Universe

at much earlier times.

An ideal environment for testing our theory is therefore the epoch of primordial

nucleosynthesis, which occurred roughly between 10 seconds and 20 minutes after

the big bang [370, 371]. The products of this period can be estimated by observing

the abundance of the light elements in the Universe today, and can hence be used

to constrain the rate of the Universe’s expansion at energy levels of about 1 MeV,

corresponding to H2 ≈ 0.14 s−2.
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A rough estimate of the constraints that can be imposed on the coupling parameter

α can be achieved by requiring that the H4 term in Eq. (4.58) does not dominate

at the start of nucleosynthesis. This implies that

|α| ≲ 1018m2 . (4.76)

To get a more precise result we can run the open source code PRIMAT18 [372],

with an appropriately modified expansion rate, to find the Helium mass fraction YP .

Comparing the result of this to the observational bound YP = 0.2449± 0.0040 [373]

then gives α ≲ 1017m2. Again, this bound is comparable to that which can be

achieved using observations of the perihelion precession of Mercury, but is not as

strong as those that can be found using LAGEOS.

4.5.5 Early Universe Inflation

At earlier times than primordial nucleosynthesis, and at higher energies, the physical

processes that occurred in the Universe are less well understood. Nevertheless, the

very early Universe is widely believed to have undergone a period of very rapid

expansion, known as “inflation”. It is during this epoch that the seeds of large-scale

structure are believed to have been sown, and which therefore provides us with an

opportunity to constrain α using processes that occurred at very early times, when

the correction term in Eq. (4.58) may become more significant.

First, it is important to note that Eq. (4.58) in combination with the energy

conservation equation, which is unchanged in this theory, indicates that Ḣ can

become infinite at a finite value of the scale factor for negative values of α. This

occurs when Γ = 0 and implies that there is an upper limit on H given by H2 =

1/(−2α). If inflation takes place above the TeV scale, which is consistent with the

lack of new physics at the LHC and also the need for Baryogenesis, we can turn this

upper limit into the constraint α ≳ −10−6m2, which would be an extremely tight

constraint. Now let us see if anything can be said concerning positive values of α.

Inflation occurs when ϵ ≡ −Ḣ/H2 < 1. If we consider the matter content of the

Universe during this period to be well modelled by a scalar field ϕ in a potential

18http://www2.iap.fr/users/pitrou/primat.htm
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V (ϕ), then this translates to the condition19

2V ′2α2

9m2
plΓV (ΓV − 1)2

≲ 1 , (4.77)

where ΓV =
√

1 + 4V α/(3m2
pl), and where a dash indicates a derivative with respect

to ϕ. This result implies that inflation is harder to achieve in 4DEGB than it is in

GR, and that the slope of the potential (i.e. V ′/V ) must be shallower. However, we

can always tailor the form of V (ϕ) in order to allow inflation to still proceed.

Let us now turn to the production of perturbations during inflation. The action

for tensor perturbations in 4DEGB is given by

ST =
1

2

∫
d3x dt a3 Γ

(
ḣ2 − c2T

(∂h)2

a2

)
, (4.78)

where h is the amplitude of either of the two gravitational wave polarizations, c2T =

1 + Γ̇/(HΓ) is the speed of propagation, and Γ = 1 + 2αH2 (i.e. we are again

setting C = 0, for convenience). The evolution of the uniform density curvature

perturbation ζ follows from the action

Sζ =
1

2

∫
d3x dt a3Γϵ

(
ζ̇2 − (∂ζ)2

a2

)
. (4.79)

These equations imply that both the curvature and tensorial perturbations are con-

served on super-horizon scales, when the wavenumber obeys k > aH.

Equations (4.78) and (4.79) allow the spectra of tensor and scalar perturbations

to be calculated in the usual way, in terms of quantities at the time a given k crosses

the apparent horizon, which results in

PT =
2

π2m2
pl

H2

Γ

∣∣∣∣∣
∗

and Pζ =
1

8π2m2
pl

H2

ϵΓ

∣∣∣∣∣
∗

, (4.80)

where the asterisk indicates quantities are to be evaluated at horizon crossing.

As already discussed in Ref. [151], these expressions imply that the tensor-to-

scalar ratio takes its usual form r = 16ϵ, while differentiating the power spectra

with respect to horizon crossing scale k = aH gives the spectral indices at leading-

19The reader will note that we have switched to Planck units here, as this is standard choice in
this area of physics.
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order in slow roll as

∂ logPζ

∂ log(aH)
= ns − 1 = −2ϵ− ϵ̇/(ϵH)− Γ̇/(ΓH) ,

∂ logPT

∂ log(aH)
= nT = −2ϵ− Γ̇/(ΓH) . (4.81)

It is clear that nT ̸= −r/8, meaning that the consistency equation of canonical single

field inflation is violated. The form of ns is also different from its canonical form,

but even when αH2 ≫ 1 it seems it should still be possible to choose a V (ϕ) that

meets the tight observational constraints on this quantity [21].

We conclude that although both the background dynamics and the spectra of

perturbations are different from their canonical form, there does not appear to be

any compelling reason why inflation in 4DEGB should not be considered consistent

with current observations for any positive value of α (assuming we are otherwise free

to choose the shape of the inflationary potential). This may change in the future,

when the spectrum of primordial gravitational waves is observed, and the consistency

condition can be tested. It may also change when higher-order correlations are

calculated, but we leave calculations of such quantities for future work.

Our results are summarized in Table 4.1.
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Observation Upper bound Data
on |α|/m2 source

GW observations ∼ 108∗ Ref. [362]
LAGEOS satellites 1010 Ref. [340]
Double Pulsar ∼ 1015 Ref. [345]

Tabletop experiment ∼ 1016 Ref. [368]
Orbit of Mercury 1017 Ref. [338]

Primordial nucleosynthesis 1018 Ref. [373]
Orbits around Sgr A∗ 1025 Ref. [341]

Event Horizon Telescope ∼1026∗ Ref. [348]
Speed of GWs 1036 Ref. [348]

Gravitational lensing −
Shapiro time delay −

Early Universe inflation − ∗

Table 4.1: A summary of the order-of-magnitude constraints available on |α|/m2 for
the various different observables considered in this chapter, ordered by
stringency. A dash indicates no constraint, a ∼ indicates that constraints
are indicative (due to simplifying assumptions), and a ∗ indicates that
asymmetric bounds are available on positive and negative values of α
(the weaker of the two are shown here).
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Appendix

Appendix 4.A Calculating ΦG

Here we wish to calculate the form of ΦG for a system of N bodies with energy

density given by Eq. (4.24). We start by defining a general potential V sourced by

a field X:

V(X) =

∫
X ′

|x− x′|
d3x′ . (4.82)

If we use the identity

U,ijU,ij =
1

2
∇2|∇U |2 + 4π∇ρ · ∇U ,

then we can use ΦG = V(G) to write

ΦG =8V(U,ijU,ij)− 8V((∇2U)2)

=4V(∇2|∇U |2) + 32πV(∇ρ · ∇U)− 8(4π)2V(ρ2) .

Now V(∇2|∇U |2) = −4π|∇U |2, and we can write

V(∇ρ · ∇U) = 4πV(ρ2) + ψ1 ,

where we have discarded a surface term and where

ψ1 =

∫
ρ′ρ′′(x− x′) · (x′ − x′′)

|x− x′|3|x′ − x′′|3
d3x′d3x′′ . (4.83)

This all gives

ΦG = −32π

(
1

2
|∇U |2 − ψ1

)
, (4.84)

which on substituting for µ̃ from (4.24) into the relevant expressions for U and ψ1

gives Eqs. (4.33) and (4.34), once divergent terms are neglected.
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Coupled Scalar Field

Closed-form solutions of the gravitational field equations allow for a simple inspec-

tion of the spacetime and calculation of observable predictions. However, modified

theories with new fundamental fields typically present field equations with increased

complexity such that these calculations become analytically impossible. One is then

typically forced to resort either to perturbation theory, which is not well-justified in

the extreme gravity regime, or to challenging numerical techniques.

The structure of the regularized theories described above is highly non-trivial,

comprising a representative of each one of the Horndeski terms, and yet they possess

an extremely simple field equation (2.57) that completely decouples from the scalar

field, and which therefore allows for simple closed-form solutions. One is then left

to wonder about the relationship that connects these threads, and why it should

be that a special combination of the field equations completely decouples from the

scalar field. This problem was addressed in Ref. [4].

When a seemingly complicated problem has a simple solution, one typically sus-

pects that there is a hidden symmetry in the problem. For example, the Einstein

equations with a matter source possessing conformal invariance are greatly simpli-

fied since the theory has constant scalar curvature on-shell, restricting the possible

spacetimes and allowing for closed-form solutions to be easily found. An example

of a theory with conformally invariant matter sources leading to simple solutions

is precisely electrovacuum (GR in the presence of an electromagnetic field), whose

Reissner-Nordström (Kerr-Newman) solution was the first ever discovered static

(spinning) black hole with a matter source. One more example is gravity with a

conformally coupled scalar field, whose matter action enjoys conformal invariance

and is of the well-known form∫
d4x

√
−g
(
R

6
Φ2 + (∇Φ)2

)
. (5.1)

The first counter-example to the no-hair theorems (see e.g. Ref. [42] for a review)
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was found precisely as a solution of this theory, the much-debated static BBMB

black hole [374–376]. Due to its compelling properties, gravity with a conformal

scalar field and its solutions have been extensively studied throughout the years (see

e.g. Refs. [377–386] and references therein).

We note that in all the above examples the Einstein-Hilbert term explicitly breaks

the conformal invariance of the full theory – a remnant of this symmetry is only

observed in the matter field equations of motion, such as the Maxwell equations or

the modified Klein-Gordon equation resulting from the action (5.1)

□Φ− R

6
Φ = 0. (5.2)

This suggests that the simplification of the equations of motion that was previously

mentioned might in fact be related to the conformal symmetry of the matter field

equations and not of the action. Then, extended theories with the same effective

symmetries might exist if conformal invariance is required solely in the matter field

equation and not necessarily in the matter action. As we show below resorting

to the example of a scalar field, the conformally coupled theory presented in Eq.

(5.1) can be extended in a natural way by incorporating a scalar-Gauss-Bonnet

sector while preserving all of its effective symmetries. The extended theory presents

field equations with a remarkable simplification that allows for simple closed-form

black hole solutions and cosmologies, providing a framework to capture the essence

of (scalar-)Gauss-Bonnet quadratic corrections to gravity in four-dimensions with

analytical studies. This Gauss-Bonnet sector will be shown to be intimately tied to

the scalar-tensor versions of regularized 4DEGB presented in the preceding sections.

5.1 Gravity with a generalized conformal scalar

field

As before, we denote with a tilde quantities constructed from the conformal geometry

g̃µν = e2ϕgµν , (5.3)
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which transforms as a metric under diffeomorphisms and is conformally invariant,

with conformal transformations acting as20

gµν → e2σgµν , ϕ→ ϕ− σ, (5.4)

where σ ≡ σ(x) depends on the spacetime point. For convenience, we work with

exponential conformal factors.

A remarkable property holds for scalar-tensor theories with a conformally invari-

ant scalar field equation. Consider the transformation of Eq. (5.4) in its infinitesimal

form, such that δσgµν = 2σgµν and δσϕ = −σ, where δσ denotes the change under

an infinitesimal conformal transformation. In this case, an action describing a the-

ory that depends solely on the metric gµν and a scalar field ϕ, S[ϕ, g], varies by an

amount

δσS =

∫
d4x

(
δS[ϕ, g]

δgµν
δσgµν +

δS[ϕ, g]

δϕ
δσϕ

)
= −

∫
d4x

(
−2gµν

δS[ϕ, g]

δgµν
+
δS[ϕ, g]

δϕ

)
σ,

(5.5)

where we identify the first and second terms in brackets with the trace and the scalar

field equations, respectively. The transformed action is then S → S + δσS. Now, if

the scalar field equation is conformally invariant, then δσS should be independent

of ϕ, such that the transformed action contains exactly the same scalar field content

as the original one, resulting in the same scalar field equation. Thus, the quantity

in brackets inside Eq. (5.5)

−2gµν
δS[ϕ, g]

δgµν
+
δS[ϕ, g]

δϕ
, (5.6)

should be a purely geometric quantity constructed only out of the metric gµν . In

short, a theory whose scalar field equation is conformally invariant, and not the

scalar-field action necessarily, will possess a purely geometrical field equation given

by the sum of the trace and scalar field equations. This equation can be, in principle,

more general than a constant scalar curvature condition and, at the same time,

restrict the allowed spacetimes possibly providing an easy path to find closed-form

solutions.

20The transformation of Eq. (5.4) is in fact a Weyl transformation, but we refer to it as a conformal
transformation to be consistent with typical terminology.
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5.1.1 Deriving the theory

Our goal now is to derive the most general scalar-tensor theory with second-order

equations of motion and a conformally invariant scalar field equation. To that end,

we note that the derivatives of g̃µν are conformally invariant and so should the

curvature scalars constructed from it. In fact, we remark that scalar quantities

constructed solely from the tilded metric are the only conformally invariant scalar

quantities that depend on only of the metric gµν and the scalar field ϕ. The proof

is similar to the one used in Ref. [380] to construct the most general conformally

invariant scalar-tensor action in four-dimensions, and is outlined next.

Let I[ϕ, g] denote a scalar quantity that depends on the scalar field and the metric

gµν . Under a conformal transformation we obtain

I[ϕ, g] → I[ϕ− σ, e2σg].

Imposing conformal invariance, and choosing σ = ϕ, we obtain I[ϕ, g] = I[0, g̃].
Thus, the only conformally invariant scalar quantities that depend only on the scalar

field ϕ and the metric gµν are purely geometric scalar quantities built out of the

tilded geometry given in Eq. (5.3), I[0, g̃]. Therefore, in order for a theory to have

a conformally invariant scalar field equation, the relation

δS[ϕ, g]

δϕ
=
√
−g̃I[0, g̃], (5.7)

should hold. This will be our starting point to derive the sought theory of gravity

with a generalized conformal scalar field. The reader will note that I[0, g̃] is yet

unspecified. We will come back to that in a minute.

We will integrate Eq. (5.7) to obtain an action functional whose scalar field

variation leads to a conformally invariant equation. The procedure to do so is

similar to the one to reconstruct a function of several variables from its partial

derivatives and is outlined next, following Ref. [387, Section 9.7] closely. First,

choose a configuration ϕc for the scalar field (typically taken to be zero) and a path

ϕ(η) with 0 ≤ η ≤ 1, that begins at the reference point ϕ(0) = ϕc and leads to the

desired final point ϕ(1) = ϕ. If an action S[ϕ, g] exists, then the construction will

give the same result for any choice of the path. It is convenient to take a straight

line path

ϕ(η) = ηϕ+ (1− η)ϕc.

Consider now the action S[ϕ(η), g] evaluated along the path. We take its derivative
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with respect to η obtaining

dS[ϕ(η), g]

dη
=

∫
d4x

δS[ϕ(η), g]

δϕ(η)

dϕ(η)

dη
.

Integrating from η = 0 to η = 1 we can obtain the sought action up to an integration

constant functional independent of the scalar Sc[0, g], and taking ϕc = 0, we obtain

S[ϕ, g] =

∫
d4x

∫ 1

0

dη
δS[ϕ, g]

δϕ

∣∣∣∣
ϕ→ηϕ

ϕ+ Sc[0, g]. (5.8)

Let us review our progress so far. Our goal is to derive the most general subset of

the Horndeski family of theories whose scalar field equation of motion is conformally

invariant. We have shown that such theory will necessarily contain a purely geo-

metric field equation that may provide an easy path to obtain closed-form solutions.

Next we demonstrated that a conformally invariant scalar field equation must obey

Eq. (5.7). Finally, we outlined a procedure to obtain the action functional that de-

scribes the theory, starting from the conformally invariant scalar field equation (5.7).

Obtaining the action that describes the sought theory then amounts to computing

and simplifying Eq. (5.8).

To work out which quantities I[0, g̃] are suitable for Eq. (5.7), leading to an action

made out only of ϕ and gµν whose equations of motion are second-order, we note

the following. The quantity
√
−g̃I[0, g̃], once expressed in terms of gµν and ϕ inside

Eq. (5.8), reveals that the action contains a term of the form

S[ϕ, g] ⊇
∫
d4x

√
−g
∫ 1

0

dη e(4−2k)ηϕϕI[0, g],

with k a constant related to the power of I[0, g] on the curvature (see e.g. Refs.

[297,298] for a review of useful conformal transformations). As a result, the theory

will necessarily contain non-minimal couplings of the scalar field to the geometric

quantity I[0, g]. Then, making use of Horndeski’s theorem [104,105], the only scalar

geometric quantity that can enter Eq. (5.7) without spoiling the requirement of

second-order field equations is a linear combination of the form

I[0, g̃] = −8λ− 2βR̃− αG̃, (5.9)

where λ, β and α are constants and G is the Gauss-Bonnet term.

We will derive the effective action associated with each of the constituents of I[0, g̃]
(i.e., the action whose scalar field variation leads to the respective constituent). To
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that end, given the conformal geometry of Eq. (5.3), recall that we have the following

useful relations in four dimensions [297,298]√
−g̃ =

√
−ge4ϕ,

R̃ = e−2ϕ
(
R− 6□ϕ− 6 (∇ϕ)2

)
,

G̃ = e−4ϕ

[
G − 8Rµν∇µϕ∇νϕ+ 8Gµν∇µ∇νϕ+ 8□ϕ (∇ϕ)2 − 8 (∇µ∇νϕ)

2

+ 8 (□ϕ)2 + 16 (∇µϕ∇νϕ) (∇µ∇νϕ)

]
.

(5.10)

In what follows, we resort to integration by parts, discard boundary terms and in the

last steps absorb purely geometric terms built out of gµν into Sc[0, g], as they have

no effect in the scalar field equation. Starting with the effective action associated

with λ we use Eq. (5.8) obtaining,

Sλ[ϕ, g] = −8λ

∫
d4x

√
−g
∫ 1

0

dη e4ϕηϕ+ Sc[0, g] = −2λ

∫
d4x

√
−ge4ϕ. (5.11)

Following the same procedure for the part of the total action associated with the

conformal Ricci scalar

SR̃[ϕ, g] = −2β

∫
d4x

√
−g
∫ 1

0

dη e2ϕη
(
R− 6η□ϕ− 6η2 (∇ϕ)2

)
ϕ+ Sc[0, g]

= −2β

∫
d4x

√
−g
(
e2ϕR−R

2
− 3□ϕ

(
e2ϕ +

1− e2ϕ

2ϕ

)
− 3 (∇ϕ)2

2ϕ2

(
e2ϕ − 2ϕe2ϕ + 2ϕ2e2ϕ − 1

))
+ Sc[0, g]

= −β
∫
d4x

√
−ge2ϕ

(
R + 6 (∇ϕ)2

)
.

(5.12)

The process to obtain the action associated with the Gauss-Bonnet term is similar,

and the following relations might prove useful:

∇µ

(
□ϕ∇µϕ− 1

2
∇µ (∇ϕ)2

)
= (□ϕ)2 − (∇µ∇νϕ)

2 −Rµν∇µϕ∇νϕ,∫
d4x

√
−gϕ∇µϕ∇νϕ∇µ∇νϕ = −1

2

∫
d4x

√
−g
(
(∇ϕ)4 + ϕ□ϕ (∇ϕ)2

)
+ boundary terms.
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Then we obtain for the Gauss-Bonnet-related part of the action

SG̃[ϕ, g] = −α
∫
d4x

√
−g
∫ 1

0

dη

[
G − 8η2Rµν∇µϕ∇νϕ+ 8ηGµν∇µ∇νϕ

+ 8η3□ϕ (∇ϕ)2 − 8η2 (∇µ∇νϕ)
2

+ 8η2 (□ϕ)2 + 16η3 (∇µϕ∇νϕ) (∇µ∇νϕ)

]
ϕ+ Sc[0, g]

= −α
∫
d4x

√
−g
[
ϕG + 4ϕGµν∇µ∇νϕ+ 2ϕ□ϕ (∇ϕ)2 + 4ϕ∇µϕ∇νϕ∇µ∇νϕ

+
8

3
ϕ
(
(□ϕ)2 − (∇µ∇νϕ)

2 −Rµν∇µϕ∇νϕ
)]

+ Sc[0, g]

= −α
∫
d4x

√
−g
[
ϕG − 4Gµν∇µϕ∇νϕ− 4□ϕ (∇ϕ)2 − 2(∇ϕ)4

]
.

(5.13)

The final combined action can be obtained by summing all contributions, together

with the Einstein-Hilbert term with a cosmological constant Λ that does not affect

the scalar field equation

S =
1

16πG

[∫
d4x

√
−g (R− 2Λ) + Sλ + SR̃ + SG̃

]
=

∫
d4x

√
−g

16πG

[
R− 2Λ− βe2ϕ

(
R + 6(∇ϕ)2

)
− 2λe4ϕ

− α

(
ϕG − 4Gµν∇µϕ∇νϕ− 4□ϕ(∇ϕ)2 − 2(∇ϕ)4

)]
.

(5.14)

The action given above in Eq. (5.14) describes, up to field redefinitions, the most

general scalar-tensor theory whose scalar field variation leads to a conformally in-

variant equation. It belongs to the Horndeski class with functions 21

G2 = −2Λ− 2λe4ϕ + 12βe2ϕX + 8αX2, G3 = 8αX,

G4 = 1− βe2ϕ + 4αX, G5 = 4α log |X|,
(5.15)

where X = −1
2
(∇ϕ)2. The field equations are obtained by varying with respect to

the metric

Gµν + Λgµν = −αHµν + βe2ϕAµν − λe4ϕgµν , (5.16)

where Hµν and Aµν have been defined previously in Eqs. (2.53) and (2.68), respec-

tively. The scalar field equation resulting from the action (5.14) is equivalent to the

21Here we marginalized over the 1/16πG overall factor in the action.
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vanishing of the quantity presented in Eq. (5.9)

βR̃ +
α

2
G̃ + 4λ = 0, (5.17)

where the tilded quantities are defined in Eq. (5.10) in terms of gµν and ϕ. Inter-

estingly, the purely geometric combination (5.6) results in the familiar condition

R +
α

2
G − 4Λ = 0. (5.18)

The action described in Eq. (5.14) can be cast into a more familiar form via the

field redefinition Φ = eϕ

S =

∫
d4x

√
−g

16πG

[
R− 2Λ− 6β

(
R

6
Φ2 + (∇Φ)2

)
− 2λΦ4

− α

(
log(Φ)G − 4Gµν∇µΦ∇νΦ

Φ2
− 4□Φ(∇Φ)2

Φ3
+

2(∇Φ)4

Φ4

)]
,

(5.19)

where we note the emergence of the usual conformally coupled scalar field action

(5.1) with a conformally invariant quartic potential. Observe that the action is

invariant under the Z2 symmetry Φ → −Φ.

5.1.2 Connection with the regularized 4DEGB theories

By comparing the action in Eq. (5.14) with the Kaluza-Klein regularized theory

presented in (2.66) (ignoring overall factors and the cosmological term), we observe

that they are equivalent by taking

β = 2λKKα, λ = 3λ2KKα, (5.20)

where we denoted the constant λ appearing in the Kaluza-Klein regularized theory

(2.66) as λKK to avoid confusion with the λ appearing in Eq. (5.14). As a corollary,

the counter-term regularized theory in Eq. (2.50) follows by taking β = λ = 0 in

Eq. (5.14). Therefore, all the regularized 4DEGB scalar-tensor theories presented,

and studied, in previous sections are subsets of a more general theory given in Eq.

(5.14) (or in Eq. (5.19) upon a field redefinition). Note that Eq. (5.20) implies the

relation λ = 3β2

4α
. This relation will recurrently appear when studying solutions to

the theory.
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5.2 Static black hole solutions

In this section we seek to obtain black hole solutions of the theory given in Eq.

(5.19), where we employ the static and spherically symmetric line element

ds2 = −f(r) dt2 + dr2

f(r)
+ r2(dθ2 + sin2 θ dφ2). (5.21)

If α = 0, the known solutions of the usual conformally coupled theory, such as the

BBMB black hole, can be obtained. We are interested in the non-vanishing α case

(furthermore, we assume β ̸= 0). For the sake of completeness, we supplement the

theory with the Maxwell action

SEM = −1

4

∫
d4x

√
−gF µνFµν , (5.22)

where Fµν = ∂µAν − ∂νAµ is the Maxwell tensor and the subscript “EM” stands for

electromagnetic. The associated (traceless) stress-energy tensor T
(EM)
µν is

T (EM)
µν = FµσF

σ
ν − 1

4
gµνFρσF

ρσ, (5.23)

while the Maxwell equations are

∇µF
µν = 0. (5.24)

Given the line element of Eq. (5.21), we assume a four-potential

A = V (r) dt− Qm

4π
cos θ dφ, (5.25)

with Qm the magnetic charge. The Maxwell equations imply

V (r) = − Qe

4πr
−Ψe,

with Qe the electric charge and Ψe the electrostatic potential. For future convenience

we define

Q2 =
Q2

e +Q2
m

4π
. (5.26)

Because any valid black hole solution must solve the geometric equation given in

Eq. (2.57), that for the line element (5.21) takes the remarkably simple form

r−2
[
(1− f)

(
r2 + α(1− f)

)]′′ − 4Λ = 0, (5.27)
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with the prime denoting a radial derivative, a solution is easily integrated to be of

the type

f(r) = 1 +
r2

2α

[
1±

√
1 + 4α

(
2GM

r3
− q

r4
+

Λ

3

)]
, (5.28)

for any two integration constants M (interpreted as the ADM mass) and q. The

metric function with the plus sign before the square-root does not present a well-

defined limit as α → 0, and has a non-physical asymptotic behavior near spatial

infinity, so we disregard it as the physical one. A black hole described by the line

element (5.21) with f(r) given in Eq. (5.28) has, in the absence of the cosmological

constant, horizons located at

r± = GM ±
√
G2M2 − α− q, (5.29)

and is asymptotically flat.

Now, a suitable linear combination of the tt and rr Einstein equations factorizes

into a condition equivalent to(
Φ′

Φ2

)′(
fΦ′ (r2Φ)′ + (f − 1)Φ2 − β

2α
r2Φ4

)
= 0. (5.30)

That allows three distinct branches22

(1) Φ =
c1

r + c2
,

(2) Φ =
2
√

2ακ/β

r

ψ

ψ2 − κ
, where ψ ≡ exp

(∫ r 1

r
√
f

)
,

(3) Φ = c4,

(5.31)

where the ci and κ are integration constants. We will analyze each situation in turn.

For the first scalar field profile, the remaining field equations allow a static black

hole solution with f(r) given by Eq. (5.28) with

q = GQ2 − 2α, c1 =
√

−2α/β, c2 = 0,

if λ = β2/4α, where Q is defined in Eq. (5.26).

Assuming the second scalar field profile, the remaining field equations are solved

with the metric function of Eq. (5.28) provided that q = GQ2 as long as λ = 3β2/4α.

22Actually there are only two branches, as branches (1) and (3) belong to the same class Φ = 1
Ar+B ,

for suitably chosen constants A and B. However, we chose to discuss them separately.
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We note that the scalar field has a free parameter, κ, that is not constrained by the

field equations and so the scalar hair is, in a sense, primary. In all cases, the scalar

field can be made regular on and outside the event horizon. In particular, if α/β > 0,

the scalar field is regular everywhere if 0 < κ < 1, and if α/β < 0, there are no

divergences and the scalar field is real if κ < 0.23

We remark that, in the absence of the electromagnetic field, a close inspection of

the field equations (5.16) reveals the existence of a critical solution with constant

scalar field (third profile)

Φ = c4 =
√
1/β,

as long as λ = −Λβ2. In this extreme situation the Einstein equations (5.16) become

an identity, and we have left to solve only the purely geometrical condition of Eq.

(2.57), whose general solution is given by Eq. (5.28) with unconstrained q. We don’t

expect this solution to be physically relevant.

A feature of the black holes here discussed is that they present an entropy S, equal
to the well-known Bekenstein-Hawking area term with a logarithmic correction

S =
A+

4G
+

2πα

G
log

(
A+

A0

)
, (5.32)

as was the case in the scalar-tensor regularized 4DEGB theories.

5.3 FLRW Cosmology

In order to briefly study the cosmologies of the theory described by the action (5.19)

we employ a FLRW background

ds2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (5.33)

and supplement the theory with matter content that has stress-energy tensor T µ
ν =

diag (−ρ, p, p, p), where ρ and p are the energy density and pressure of the matter

fields, respectively. We assume all quantities are homogeneous and isotropic func-

tions of cosmological time. The values k = {−1, 0, 1} correspond respectively to a

negatively, flat, and positively curved Universe.

For a flat (k = 0) FLRW metric, it can be shown that the scalar field equation of

23Note that ψ ≥ 1 as the integrand inside the exponential is always positive.
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motion (5.17) can be solved with a scalar field given by

Φ =
1

a

√√√√3β

2λ

(
±

√
1− 4αλ

3β2
− 1

)(
γ +

∫ t dt

a

)−1

, (5.34)

where γ is an arbitrary integration constant. This profile, when substituted in the

Einstein equations (5.16), results in a set of modified Friedmann equations that take

the form

H2 + αH4 =
8πG

3
ρ+

Λ

3
,

Ḣ = −4πG(ρ+ p)

1 + 2αH2
,

(5.35)

where H = ȧ/a is again the Hubble rate (the dot denotes a temporal derivative)

and the matter fields obey the continuity equation ρ̇ + 3H (ρ+ p) = 0. These are

the same Friedmann equations as the ones that result from the regularized 4DEGB

theories, that we have studied in more detail in previous sections.

We now consider the curved (k ̸= 0) FLRW cases. The scalar field equation is

solved by the following profile

Φ =
1

a

√√√√6γβk

λ

(
±

√
1− 4αλ

3β2
− 1

)
ψ

ψ2 + γ
, where ψ ≡ exp

(√
−k
∫ t dt

a

)
(5.36)

with γ an arbitrary integration constant. This profile, when substituted in the

Einstein equations (5.16), results in a set of modified Friedmann equations that are

again equivalent to those of the regularized 4DEGB approaches

H2 +
k

a2
+ α

(
H2 +

k

a2

)2

=
8πG

3
ρ+

Λ

3
,

Ḣ = − 4πG(ρ+ p)

1 + 2α
(
H2 + k

a2

) + k

a2
.

(5.37)

Note however, that even though the modified Friedmann equations are the same

here as they were in the regularized 4DEGB approaches, the theories are in general

different. Indeed, if the condition in Eq. (5.20) does not hold, then the generalized

conformal scalar field theory is question is different from the regularized 4DEGB

ones we have discussed in previous chapters.

Recently, the neutron star merging event GW170817 [348] placed stringent con-

straints on the viable gravitational theories because the electromagnetic counterpart

to GW170817 indicates that the deviation in the speed of gravitational waves, cT ,
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from that of light must be less than one part in 1015 [351]. The propagation speed

of gravitational waves in Horndeski theories with non-trivial G4 and G5 functions

differ, in general, from unity and is given by [105]

c2T =
G4 −X

(
ϕ̈G5,X +G5,ϕ

)
G4 − 2XG4,X −X

(
Hϕ̇G5,X −G5,ϕ

) . (5.38)

Consequently one might worry that the theory specified in Eq. (5.15) is severely

constrained. As we have seen in previous sections, the counter-term regularized

4DEGB theory (which corresponds to β = λ = 0) easily evades these constraints.

Remarkably, even in the presence of non-vanishing β and λ, something similar hap-

pens. If one considers a dark energy dominated universe where the scale factor is

exponential a ∼ eκt, using the scalar field profile of Eq. (5.34), then c2T = 1, leaving

the theory unconstrained. Adopting a more conservative approach where we take

H2 ≈ −Ḣ ≈ 5.8 × 10−36 s−2 and the fiducial value λ = 3β2/4α, we obtain the

constraint ∣∣c2T − 1
∣∣ = ∣∣∣∣∣ 4αḢ

1 + 2αH2

∣∣∣∣∣ ≲ 10−15 ⇒
√

|α| ≲ 1015 km, (5.39)

which corresponds to the same weak upper bound on α as presented in Eq. (4.62).
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6 Numerical Construction of

Highly Accurate Spinning Black

Hole Solutions in Modified

Theories of Gravity

So far we have focused most of our research in 4D Einstein-Gauss-Bonnet theories

motivated by the regularization introduced by Glavan & Lin [110]. The next two

chapters (chapter 6 and 7) will diverge slightly from that line of research. In the

present chapter we will investigate a method to numerically obtain stationary and

axisymmetric black hole solutions in (generic) modified theories of gravity. We will,

nonetheless, apply this method to more standard Gauss-Bonnet theories such as

those presented in Eq. (1.37) as a suitable example. Chapter 7 will concern the

study of black holes in theories of the form of Eq. (1.37) in more detail.

In the last decade with the observation of gravitational wave events [30,388–392]

by the LIGO/Virgo Collaboration, and with interferometry measurements of the

center of the M87 [31] and Milky Way [32,393] galaxies by the Event Horizon Tele-

scope Collaboration, humankind has entered a new era of multi-messenger astron-

omy, opening up a new avenue to test the nature of black holes and Einstein’s theory

in the previously inaccessible strong field regime.

Mathematical theorems guarantee that in (electro-)vacuum the gravitational field

of stationary black holes is described uniquely by the Kerr(-Newman) metric [40].

Supported by the uniqueness theorems, along with a set of other results dubbed

no-hair theorems (see [42] for a review), the Kerr hypothesis paradigm asserts that

the Kerr metric provides, as eloquently put by Subrahmanijan Chandrasekhar, the

absolute exact representation of untold numbers of massive black holes that populate

the universe. While all strong regime observations are, so far, compatible with the

Kerr hypothesis, any eventual deviation would provide a much sought smoking-gun

for new physics.
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6 Numerical Construction of Highly Accurate Spinning Black Holes

Once we delve onto the realm of modified theories of gravity, a large landscape

of new possibilities emerges, with stationary vacuum spacetimes needing not to be

described by the Kerr metric. Popular examples of black hole spacetimes defying

the Kerr hypothesis include gravity coupled with new (complex) bosonic degrees

of freedom [394–396], scalar-Gauss-Bonnet gravity [70, 71, 73–77, 79–83, 85], 4D-

Einstein-Gauss-Bonnet gravity [2, 4–6, 110, 256–259], and dynamical Chern-Simons

gravity [397–400].

With the modification of the field equations describing gravity, naturally comes

an increase in their complexity, such that analytical analysis become intractable.

One is then forced to either resort to perturbation theory or numerical methods.

However, once we enter the strong field regime, perturbative approximations may

not be well-justified, motivating a fully numerical study.

The need for accurate black hole solutions in modified theories of gravity comes

from the ever-increasing precision of our observations and measurements, such that

these models can effectively be tested against collected data, in order to get a better

understanding of the true nature of gravity. In this chapter, much in the style of

Refs. [401, 402], we will describe a numerical method capable of solving with high

accuracy a system of non-linear elliptic partial differential equations (PDEs), such

as those that appear when analyzing stationary and axially symmetric spacetimes.

Our numerical implementation will then be validated against the Kerr black hole

from GR and later applied to a class of modified theories of gravity, namely scalar-

Gauss-Bonnet theories for several couplings.

A first version of our numerical implementation is available in the GitHub reposi-

tory in Ref. [403], and can be run with ease by laptop-class computers. The code is

written in the programming language Julia, being fast, memory efficient, and easy

to manipulate such that implementing different models is not a difficult task. In

this way, researchers can spend more time doing physics and less time coding.

The chapter is organized as follows. In section 6.1 we introduce the reader to

pseudospectral methods and the technical machinery that will be necessary to ap-

ply them in the context of black hole physics. Next, in section 6.2 we will describe

how we can use the aforementioned methods to solve the axisymmetric field equa-

tions for gravity, discussing the boundary conditions, coordinate compactifications,

and numerical approach. We further discuss on many of the properties that can

be extracted from a spinning black hole solution. Finally, in section 6.3 we start

by validating our methods and code against the Kerr black hole, which is known

in closed form, and later use our machinery to obtain stationary and axisymmet-

ric black holes in Einstein-scalar-Gauss-Bonnet gravity for linear and exponential
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couplings, discussing on their accuracy. We end by comparing our results to other

existing codes.

6.1 Numerical Spectral Methods

The presentation in this section follows closely that of John P. Boyd’s book on

spectral methods [404]. Although we will try to summarize the most important

points of spectral methods in application to the problem in question, readers that

are new to the topic are nonetheless recommended to explore Ref. [404]. The idea

behind spectral methods is to approximate the smooth solution u(x) to a (system

of) differential (or integral) equation(s) of the form24

R (x, u) = 0, (6.1)

where R is called the residual of the system, by a finite truncated series

u(x) ≈ uN(x) =
N−1∑
n=0

αnϕn(x), (6.2)

where {ϕn(x)}∞n=0 is a set of global and orthogonal basis functions, {αn}∞n=0 the

set of spectral coefficients, and N the resolution. In this setup, uN(x) is said to

be a numerical solution of the system (6.1) if its spectral coefficients are such that

the residual is minimized to below a certain prescribed tolerance. The result is a

global (rather than local) approximation method with an exponential (or spectral)

convergence for problems with smooth solutions, using high-order polynomials or

trigonometric functions that are infinitely differentiable. This is in contrast to the

polynomial convergence rate of most other numerical methods, such as finite ele-

ment/difference schemes that generically consist of low-order (local) polynomials,

thus suffering from lower accuracy when compared to spectral methods. Further-

more, numerical solutions obtained via a spectral method provide a (high-accuracy)

analytical approximation to the problem in question, rather than a set of values of

the target solution at a discrete number of points.

Of importance is the concept of orthogonality, a condition the set of basis functions

are required to obey. Typically, the word “orthogonal” is used when mentioning

vectors and is defined with respect to the usual inner product of two vectors (the

sum of the products of the corresponding components). The concept of the inner

24We consider only the one dimensional case for now
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product can be generalized to deal with two arbitrary functions f(x) and g(x) with

respect to the weight function ω(x) > 0 on the interval [a, b] as

(f, g) ≡
∫ b

a

f(x)g(x)ω(x)dx. (6.3)

Two functions are then said to be orthogonal if their inner product vanishes. There-

fore, a set of basis functions {ϕn(x)}∞n=0 is said to be orthogonal in the given interval

[a, b] if

(ϕn, ϕm) = cnδmn, (6.4)

where δmn is the Kronecker delta and cn are normalization constants. Orthogonality

guarantees that a set of basis functions will be as different from one another as

possible, in a sort of maximization of linear independence. Once a basis is found,

all functions in that particular function space can be expanded with respect to the

orthogonal functions.

The set of basis functions to use in a (numerical) spectral method should further

have a number of properties – i) easy to compute (e.g. trigonometric functions or

polynomials); ii) the approximations should converge rapidly to the true solution as

the resolution is increased; iii) completeness, which means that any solution can be

represented to arbitrarily high accuracy by taking the resolution to be sufficiently

high. Two possible sets of basis functions that obey the above requirements are

the basis of an ordinary Fourier series (sines and cosines) and a special class of

polynomials dubbed Chebyshev polynomials.

6.1.1 Chebyshev Polynomials

For non-periodic problems, Chebyshev polynomials are the most natural choice as

the spectral series is guaranteed to converge exponentially fast (provided our domain

is restricted to the interval x ∈ [−1, 1]). The nth Chebyshev polynomial (of the first

kind) is defined as

Tn (x) = cos (nθ) , θ = arccosx (6.5)

or equivalently by the three-term recurrence relation

T0(x) ≡ 1, T1(x) ≡ x

Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2.
(6.6)

The first six Chebyshev polynomials are shown in Fig. 6.1.1 in the domain x ∈
[−1, 1].
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Figure 6.1.1: First six Chebyshev polynomials in the domain x ∈ [−1, 1].

Importantly, it can be shown that Chebyshev polynomials obey the orthogonality

relation in the domain x ∈ [−1, 1]∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx =
π

2
(1 + δ0n) δmn, (6.7)

and therefore they form an orthogonal basis. Their derivatives are given by

d

dx
Tn(x) = nUn−1(x), (6.8)

where Un(x) denotes the nth Chebyshev polynomial of the second kind, defined by

the recurrence relation

U0(x) ≡ 1, U1(x) ≡ 2x,

Un(x) = 2xUn−1(x)− Un−2(x), n ≥ 2,
(6.9)

and with derivative

d

dx
Un(x) =

(n+ 1)Tn+1(x)− xUn(x)

x2 − 1
. (6.10)

Note that some derivatives require special care at the boundaries x = ±1, and must

be computed as a well-defined limit, namely

d2Tn
dx2

∣∣∣∣
x=−1

= (−1)n
n4 − n2

3
,

d2Tn
dx2

∣∣∣∣
x=1

=
n4 − n2

3
. (6.11)

An important concept, intimately connected with Chebyshev polynomials, is in-
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terpolation. Interpolation functions are typically ordinary or trigonometric poly-

nomials, whose degrees of freedom are determined by the requirement that the

interpolant agrees with the true function at the chosen set of interpolation (or collo-

cation) points. The objective is that the interpolant provides a good approximation

to the true function. By virtue of the minimal amplitude theorem [404], Chebyshev

polynomials are widely used in interpolations. The reason is twofold. First, when

using the so called Chebyshev nodes (or Gauss-Chebyshev points), given by

xn = cos

(
(2n+ 1) π

2N

)
, n = 0, . . . , N − 1, (6.12)

as collocation points, the effect of the Runge phenomenon (numerical instabilities

near the boundaries in the form of uncontrolled oscillations) is minimized. Note

that xn are the roots of the Nth Chebyshev polynomial. Secondly, when Chebyshev

polynomials are used as the basis for the interpolation, the interpolation error is

distributed uniformly over the whole range.

The algorithm to interpolate a smooth function u(x) using a truncated Chebyshev

series25

uN(x) =
N−1∑
n=0

′
αnTn(x), (6.13)

relies on finding the optimal spectral coefficients {αn} and uses the discrete orthog-

onality relation of Chebyshev polynomials

N−1∑
j=0

Tn(xj)Tm(xj) =
N

2
(1 + δ0n) δmn, (6.14)

where the xj are given in Eq. (6.12). To find the spectral coefficients we note that

N−1∑
j=0

uN(xj)Tk(xj) =
N−1∑
i=0

′
αi

N−1∑
j=0

Ti(xj)Tk(xj),

and using the discrete orthogonality relations, we obtain

αn =
2

N

N−1∑
j=0

u(xj)Tn(xj). (6.15)

We present in Fig. 6.1.2 an illustrative example of a Chebyshev interpolation per-

25The prime in the sum denotes that the first coefficient is halved. We chose to halve the first
coefficient in the sum in order to simplify some relations below, such as Eq. (6.15).
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formed for several resolutions using the above expressions.
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Figure 6.1.2: Interpolation of the function u(x) = x2e−2x on a Gauss-Chebyshev
grid, for resolutions ranging from N = 1 to N = 6. Using Eqs. (6.13)
and (6.15) we find that for N = 6 the spectral coefficients of the
approximation u6(x) are α0 ≈ 1.48427, α1 ≈ −2.49232, α2 ≈ 1.85409,
α3 ≈ −1.01286, α4 ≈ 0.395175, and α5 ≈ −0.111169.

6.1.2 Fourier Series

Fourier’s theorem states that any (reasonably well-behaved) function can be written

in terms of an infinite sum of trigonometric functions, a Fourier series. The Fourier

series of a function u(θ) makes use of the orthogonality relationships of the sine and

cosine functions ∫ 2π

0

sin(nθ) cos(mθ)dθ = 0,∫ 2π

0

sin(nθ) sin(mθ)dθ = π (1− δ0n) δmn,∫ 2π

0

cos(nθ) cos(mθ)dθ = π (1 + δ0n) δmn,

(6.16)

and is given by

u(θ) =
∞∑
n=0

′
an cos (nθ) +

∞∑
n=1

bn sin (nθ) , (6.17)

where the expressions for the coefficients an and bn are

an =
1

π

∫ π

−π

u(θ) cos(nθ)dθ, bn =
1

π

∫ π

−π

u(θ) sin(nθ)dθ.
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Taking into account the symmetries of the problem at hand, it is often unnecessary

to use the full Fourier series, as the terms of a Fourier series not only possess definite

parity with respect to θ = 0, but also with respect to θ = π/2. Table 6.1.1 summa-

rizes the properties of the elements of a Fourier series of a function u(θ), depending

on the parity symmetries, along with a scheme of its boundary values.

Fourier series Parity w.r.t. θ = 0 Parity w.r.t. θ = π/2 u(0) u(π
2
) ∂θu(0) ∂θu(

π
2
)

cos([2n] θ) Even Even ̸= 0 ̸= 0 = 0 = 0
cos([2n+ 1] θ) Even Odd ̸= 0 = 0 = 0 ̸= 0
sin([2n] θ) Odd Odd = 0 = 0 ̸= 0 ̸= 0

sin([2n+ 1] θ) Odd Even = 0 ̸= 0 ̸= 0 = 0

Table 6.1.1: Properties of the elements of a Fourier series of a function u(θ), de-
pending on the parity symmetries, along with a scheme of its boundary
values. Here, n ∈ N0. The entries on this table for θ = π would be
equivalent to those of θ = 0.

Stationary and axisymmetric black holes are solutions to a system of two-dimensional

elliptic PDEs that depend on the radial coordinate and the zenith angle θ ∈ [0, π].

These solutions often possess definite parity with respect to θ = π/2 (in most cases

they are symmetric about θ = π/2), and therefore we need only to consider the

range θ ∈ [0, π/2]. In this range, the following orthogonality relations hold∫ π/2

0

cos (2nθ) cos (2mθ) dθ =
π

4
(1 + δ0n) δmn,∫ π/2

0

cos([2n+ 1] θ) cos([2m+ 1] θ)dθ =
π

4
δmn,∫ π/2

0

sin (2nθ) sin (2mθ) dθ =
π

4
(1− δ0n) δmn,∫ π/2

0

sin([2n+ 1] θ) sin([2m+ 1] θ)dθ =
π

4
δmn,

(6.18)
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and their discrete version

N−1∑
j=0

cos (2nθj) cos (2mθj) =
N

2
(1 + δ0n) δmn,

N−1∑
j=0

cos ([2n+ 1] θj) cos ([2m+ 1] θj) =
N

2
δmn,

N−1∑
j=0

sin (2nθj) sin (2mθj) =
N

2
(1− δ0n) δmn,

N−1∑
j=0

sin ([2n+ 1] θj) sin ([2m+ 1] θj) =
N

2
δmn,

(6.19)

where

θn =
(2n+ 1) π

4N
, n = 0, . . . , N − 1. (6.20)

With the above relations, an expression similar to that of Eq. (6.15) can be obtained

for trigonometric interpolation of function. For example, a function symmetric about

θ = 0, π/2 can be interpolated with even cosines by using the spectral coefficients

αn =
2

N

N−1∑
j=0

u(θj) cos(2nθj). (6.21)

6.1.3 Solving an ODE with a spectral method – a first

example

To get a better understanding on how to solve differential equations using a spectral

method, we will first consider a simple ODE example. Namely, consider the one

dimensional non-linear boundary value problem

R = uxx − u2x = 0, u(−1)− 2 = 0, u(1)− 1 = 0, (6.22)

with exact solution

u(x) = log

(
2e2

(e− 1)x+ e+ 1

)
. (6.23)

We will approximate the solution to this boundary value problem using a Chebyshev

spectral method, and later compare our results with the exact solution. To make

calculations tractable analytically, we will consider a (very) low resolution of N = 3,
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Figure 6.1.3: Approximations to the solution of the boundary value problem given
in Eq. (6.22) (top) together with their absolute errors with respect to
the exact solution (bottom) for resolutions N = 3 (left) and N = 24
(right).

i.e.,

u ≈ u3 =
α0

2
T0(x) + α1T1(x) + α2T2(x) =

α0

2
+ α1x+ α2

(
2x2 − 1

)
, (6.24)

where we have N = 3 degrees of freedom (α0, α1, and α2). Note that we have a

number of boundary conditions NBC = 2. Once we substitute our ansätz of Eq.

(6.24) onto the residual given in Eq. (6.22) we obtain

R ≈ 4α2 − (4α2x+ α1)
2 = 0, (6.25)

together with the boundary conditions

α0

2
− α1 + α2 − 2 = 0,

α0

2
+ α1 + α2 − 1 = 0. (6.26)

Given that we have onlyN = 3 degrees of freedom, and the two boundary conditions

provide two constraints, to solve the system we have to evaluate the residual at only

N − NBC = 1 collocation point. The collocation point is chosen according to Eq.
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Figure 6.1.4: Logarithmic plot of the maximum absolute error in the approximation
to the solution of the boundary value problem as a function of the
resolution. Spectral convergence is observed, together with a roundoff
plateau.

(6.12) with resolution N −NBC = 1, which gives only the point x = 0.26 In the end,

with our resolution N = 3, finding an approximate solution to the boundary value

problem reduces to solving N = 3 non-linear coupled algebraic equations for the

spectral coefficients, given by the two boundary conditions of Eq. (6.26) together

with the residual of Eq. (6.25) evaluated at x = 0. The solution to the system is

α0 =
23

8
, α1 = −1

2
, α2 =

1

16
.

On Fig. 6.1.3 we plot the exact solution against the approximation obtained with

N = 3, together with the absolute error, |1−uN/u|, whose maximum can be seen to

be O (10−2) already for a very low resolution N = 3. Also on Fig. 6.1.3 we plot our

approximation to the solution of the boundary value problem, but for a resolution

N = 24, where we observe that errors of the order of machine precision (O (10−16))

are attained. In Fig. 6.1.4 we plot the behaviour of the maximum absolute error as

a function of the resolution, where exponential convergence is observed. As a rule

of thumb, the truncation error is typically the same order-of-magnitude as the last

coefficient retained in the truncation series.

An important point to make here is that even though for N = 3 the approxima-

tion system has a closed-form analytical solution for the spectral coefficients, once

26Had we chosen a resolution N = 4, the number of collocation points where we would have to
evaluate the residual would be N −NBC = 2, and the collocation points in that case, according
to Eq. (6.12) would give the set x = ± sinπ/8 ≈ ±0.382683.
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higher resolutions are considered, a numerical root-finding method (such as Newton-

Raphson) has to be employed. To successfully employ a Newton-Raphson method,

a good initial guess for the spectral coefficients is of the utmost importance. We

will come back to this in the next section.

To conclude, spectral collocation methods are powerful tools that can be used to

numerically solve differential equations, providing global analytical approximations

for the solution, rather than obtaining a set of approximate values of the solution at

a discrete grid. Mildly good results can be obtained with low resolutions, and highly

accurate ones can be obtained by increasing the resolution as convergence is expo-

nential. Furthermore, handling any kind of boundary conditions is straightforward.

Spectral collocation methods are also known as pseudospectral methods.

6.1.4 Root-finding methods – Newton-Raphson

To numerically solve the system of algebraic equations for the spectral coefficients

resulting from evaluating the residual at the collocation points, together with the

boundary conditions, a root-finding method should (in general) be employed. In

particular, we will focus on the Newton-Raphson method. Starting with the one-

dimensional example, the main objective of the Newton-Raphson is to find a value

x∗ such that, starting from a value x0, an equation of the form f(x) = 0 is solved to

a certain prescribed tolerance. It follows from Taylor’s theorem, and can be stated

in an iterative form

xn+1 = xn −
f(xn)

f ′(xn)
. (6.27)

Example: assume we want to find the root of the function f(x) = x3+x− 1, known

to be x∗ ≈ 0.6823278 to eight decimal places. Starting with x0 = 1 as our initial

guess, using Eq. (6.27) we obtain

x1 = 0.75, x2 = 0.68604651, x3 = 0.68233958, x4 = 0.6823278,

thus converging to x∗ in four iterations to the prescribed tolerance of eight deci-

mal places. In more complicated cases, an appropriate choice of starting point is

extremely important and must be done carefully.

A generalization of the method given in Eq. (6.27) exists for systems ofN variables

with N equations (finding the root of a vector-valued function F : RN → RN), and

amounts to iteratively solve the linear system

J (xn) (xn+1 − xn) = −F (xn) , (6.28)
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for the unknown xn+1−xn, where J is the Jacobian matrix (N ×N) of the system,

defined as

Jij =
∂Fi

∂xj
. (6.29)

Constructing the Jacobian matrix of a given system is not always an easy task, and

most existing packages will have methods to numerically approximate the Jacobian

in an automatic way. However, these methods can be computationally expensive if

the problem in question is rather large or complicated.

Of particular interest to this work, is how to compute the Jacobian matrix for a

problem to be solved using a spectral method. In general, the system to be solved

F , will be composed of the residual R evaluated at the Gauss-Chebyshev points

(6.12), and the boundary conditions, depending on u, ux, uxx. Our unknowns are

the spectral coefficients αj. Thus, to facilitate the computation of the Jacobian, we

may use the chain rule

Jij =
∂Fi

∂αj

=
∂Fi

∂u

∂u

∂αj

+
∂Fi

∂ux

∂ux
∂αj

+
∂Fi

∂uxx

∂uxx
∂αj

(6.30)

and only then substitute the spectral expansions for the function u. This process is

easily generalizable to a system of ODEs/PDEs (rather than a single one)27.

As previously stated, when using a Newton-Raphson method, the choice of initial

guess to the spectral coefficients is extremely important, because non-appropriate

choice of initial guess will likely result in non-convergence of the algorithm. A

good initial guess can sometimes be difficult to obtain, especially when dealing

with systems of PDEs, where the number of coefficients is large (for our specific

black holes problem, typically of O (103) coefficients). A good way of tackling this

issue stems from a good understanding of the problem in question. For example,

from an effective field theory point of view, a Kerr black hole is probably a good

approximation to a black hole solution in modified theories. Therefore, since we

have a closed-form expression for a Kerr black hole, using the discussed interpolation

techniques, the resultant spectral coefficients can be used as an initial guess to obtain

a numerical solution of a black hole in modified theories.

27One must be careful when labeling the spectral coefficients of the different functions as it might
be a source of errors.
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6.2 Black Holes – Metric Ansätz, The Kerr

Solution, Boundary Conditions, and

Connection with the Numerical Approach

We will now apply the methods described in the previous sections to black hole

physics, namely to obtain stationary solutions to the field equations of gravity (GR

or modified theories), and study their properties.

Stationary black holes are solutions to a set of PDEs resulting from the field

equations of a theory of gravity, and are described by a line-element. We will focus

on a particular ansätz for the spacetime metric in quasi-isotropic coordinates, which

is stationary, axisymmetric, and circular

ds2 = −fN 2dt2 +
g

f

[
h
(
dr2 + r2dθ2

)
+ r2 sin2 θ

(
dφ− W

r
(1−N ) dt

)2
]
, (6.31)

where f , g, h and W are dimensionless functions of the radial and angular coordi-

nates r and θ, and

N ≡ N (r) = 1− rH
r
,

where rH is the (coordinate) location of the event horizon. The spatial coordinates

range over the intervals

r ∈ [rH ,∞[, θ ∈ [0, π], φ ∈ [0, 2π]. (6.32)

The spacetime possesses two Killing vector fields, k = ∂t and Φ = ∂φ, and the linear

combination

ξ = ∂t + ΩH∂φ, (6.33)

where ΩH is the angular velocity of the horizon (to be defined below), is orthogo-

nal to and null on the event horizon. This Lewis-Papapetrou form for the metric

is motivated by the discussion of Ref. [405], which asserts that the above metric

ansätz is consistent for a generic theory of gravity provided that its solutions can

be obtained perturbatively from a solution in the general relativity limit. Note that

our form of the metric functions on the line element of Eq. (6.31) differ somewhat

from the standard form used in other works (see e.g. [73,77,80,81,83,84,394–396]).

The reasons for this will become clearer later on, once we make a connection to the

numerical approach, and are related to numerical accuracy issues.
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6.2.1 General Relativity – The Kerr Black Hole

For now let us focus on an analytical study of the known Kerr black hole, which is

the solution to the stationary and axisymmetric field equations of GR in vacuum.

For completeness, we present its charged generalization, the Kerr-Newman solution

of electrovacuum in Appendix 6.A. The Kerr black hole solves the field equations

Gµν = 0, (6.34)

where Gµν is the Einstein tensor of the metric. The field equations can be obtained

with the Einstein-Hilbert action principle

S =
1

16π

∫
d4x

√
−gR, (6.35)

where R and g are respectively the Ricci scalar of the determinant of the metric.

With the ansätz of Eq. (6.31) the Kerr black hole solution reads

f =
(
1 +

rH
r

)2 A
B
,

g =
(
1 +

rH
r

)2
,

h =
A2

B
,

W =
2M (Mr + r2 + r2H)

rHr3B

√
M2 − 4r2H

(6.36)

where

A =
2Mr (Mr + (r2 + r2H)) + (r2 − r2H)

2

r4
− (M2 − 4r2H)

r2
sin2 θ,

B =

(
A+

(M2 − 4r2H)

r2
sin2 θ

)2

− (r2 − r2H)
2
(M2 − 4r2H)

r6
sin2 θ,

(6.37)

and M is the ADM mass of the black hole. The total angular momentum (per unit

mass), a, of the solution is related to M and rH via

rH =

√
M2 − a2

2
≡ M

2

√
1− χ2, (6.38)

where we have defined the dimensionless spin

χ ≡ a/M = J/M2, (6.39)
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The mass M and total angular momentum J can be read of the decay off from the

metric components as r → ∞

gtt = −fN 2 +
g (1−N )2W 2

f
sin2 θ = −1 +

2M

r
+O

(
r−2
)
,

gtφ = −gr (1−N )W

f
sin2 θ = −2J

r
sin2 θ +O

(
r−2
)
,

(6.40)

which leads to

f = 1− 2 (M − rH)

r
+O

(
r−2
)
,

W =
2J

rHr
+O

(
r−2
)
.

(6.41)

Note that the Kerr black hole in the quasi-isotropic coordinate system presented in

Eq. (6.31) can be obtained from the standard textbook Boyer-Lindquist coordinates

solution with the radial coordinate transformation

rBL = r +M +
M2 − a2

4r
= r

(
1 +

M

r
+
r2H
r2

)
. (6.42)

The inverse transformation is given by

r =
1

2

(
rBL −M +

√
(rBL −M)2 − 4r2H

)
. (6.43)

6.2.2 Boundary Conditions

To solve the set of PDEs that result from the field equations, suitable boundary

conditions should be imposed. These are obvious if an exact solution, such as the

Kerr solution, is known by a trivial examination of the metric functions. However,

in more intricate cases in modified gravity lacking an exact solution, the boundary

conditions must be found with a careful examination of the field equations, by em-

ploying suitable expansions of the involved functions near the domain boundaries.

With this process, we find that in all cases to be discussed in this work within mod-

ified gravity theories, the metric functions must obey the same boundary conditions

as the Kerr solution does. These conditions are summarized next.

(i) Axis boundary conditions: Axial symmetry and regularity of the solutions

on the symmetry axis θ = 0, π, imply the following boundary conditions

∂θf = ∂θg = ∂θh = ∂θW = 0, for θ = 0, π. (6.44)

Moreover, the absence of conical singularities further imposes that on the symmetry
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axis

h = 1, for θ = 0, π. (6.45)

All solutions to be discussed in this work, much like the Kerr black hole, are sym-

metric with respect to a reflection on the equatorial plane θ = π/2. Therefore, it

is enough to consider the range θ ∈ [0, π/2] and one of the boundary conditions

becomes

∂θf = ∂θg = ∂θh = ∂θW = 0, for θ = π/2. (6.46)

(ii) Event horizon boundary conditions: The black hole solutions here dis-

cussed do possess an event horizon located at a surface with constant radial variable

r = rH . The boundary conditions that the metric functions f , g and h obey are

f − rH∂rf = 0

g + rH∂rg = 0,

∂rh = 0,

(6.47)

for r = rH . The reason for the Robin type boundary conditions that the functions

f and g obey comes from the inclusion of the N 2 factor in front of f in the dt2

coefficient of the metric ansätz (Eq. (6.31)). This factor is chosen such that these

functions do not contain a double-zero in a near-horizon expansion, allowing for

more accurate solutions in this region, and therefore, a more accurate extraction

of horizon physical quantities such as the event horizon area and temperature. We

find that there are (at least) two possibilities for the condition that the function W

should obey at the horizon, one of which must be chosen appropriately such that

the number of input parameters is kept at two (see discussion below in Sec. 6.2.3)

W = rHΩH (6.48)

or

W − rH
2
∂rW = 0, (6.49)

at r = rH , where ΩH is a constant interpreted as the angular velocity of the event

horizon, which in the case of a Kerr black hole is given by

ΩKerr
H =

√
M2 − 4r2H

2M (M + 2rH)
=
χ2 − 1 +

√
1− χ2

4rHχ
. (6.50)

(iii) Asymptotic boundary conditions: Requiring asymptotic flatness (i.e.,

that as r → ∞, our solution approaches the Minkowski spacetime), the functions f ,
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g, and h obey

lim
r→∞

f = lim
r→∞

g = lim
r→∞

h = 1. (6.51)

Similarly to the boundary conditions at the event horizon, we find (at least) two

suitable conditions for the function W

lim
r→∞

W = 0, (6.52)

or, from the asymptotic expansion of Eq. (6.41)

lim
r→∞

rHr
2∂rW + 2M2χ = 0 ⇔ lim

r→∞

r2

2rH
∂rW +

(
1 +

r2

2rH
∂rf

)2

χ = 0. (6.53)

6.2.3 Connection with the numerical approach

The field equations of a gravitational theory once applied to the line element of Eq.

(6.31) will result in a set of non-linear coupled elliptic PDEs in r and θ subject to

the boundary conditions described above. Our objective is to solve this system of

PDEs numerically using a spectral method. For this we introduce the compactified

radial coordinate

x = 1− 2rH
r
, (6.54)

mapping the range r ∈ [rH ,∞[ to

x ∈ [−1, 1]. (6.55)

With the compactified coordinate, the radial boundary conditions change as follows.

Event horizon boundary conditions: The boundary conditions that the metric

functions f , g and h obey are

f − 2∂xf = 0

g + 2∂xg = 0,

∂xh = 0,

(6.56)

for x = −1. For the functionW , the first possibility (Eq. (6.48)) remains unchanged

(W |x=1 = rHΩH), whereas the second becomes

W − ∂xW = 0, (6.57)

at x = −1.

Asymptotic boundary conditions: The asymptotic boundary conditions the
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functions f , g, and h are now

f = g = h = 1, for x = 1 (6.58)

Asymptotically, function W now obeys either

W = 0, (6.59)

or

∂xW + (1 + ∂xf)
2 χ = 0, (6.60)

at x = 1.

With our compactified radial coordinate, and given the symmetries of our prob-

lem28, a suitable spectral expansion for the black hole metric functions (collectively

denoted by F = {f, g, h,W}) is given by

F =
Nx−1∑
i=0

′
Nθ−1∑
j=0

′
αijTi(x) cos (2jθ) , (6.61)

where Nx and Nθ are the resolutions in the radial and angular coordinates. Note

that the angular boundary conditions are automatically satisfied for all functions

given our spectral expansion (c.f. Table 6.1.1). Of extreme importance to set up a

good initial guess for our solver, is how to interpolate a generic function u(x, θ) (with

the appropriate symmetries in the angular coordinate) given the above expansion.

As mentioned above, we will usually use the Kerr metric itself to set our initial

guess when working with modified theories of gravity, and to do so we will need

the expression for the spectral coefficients that follow from an interpolation of a

two-dimensional function u(x, θ), which is given by

αij =
4

NxNθ

Nx−1∑
k=0

Nθ−1∑
l=0

u(xk, θl)Ti(xk) cos (2jθl) , (6.62)

where xk and θl are given in Eqs. (6.12) and (6.20) respectively.

Each Kerr black hole is uniquely described by two input parameters. For example,

in the presentation given in Eq. (6.36), these are the location of the event horizon rH

and the ADM massM . We have seen, however, in expressions (6.38) and (6.50) that

they are related to the dimensionless spin χ and the horizon angular velocity ΩH .

Therefore, using the correct parametrization, the Kerr solution can be described by

28From now on we consider only the cases with even parity with respect to θ = π/2.
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Figure 6.2.1: Choosing (rH ,ΩH) as input parameters, for fixed rH , two branches
exist.

any input pair chosen from rH , ΩH , χ, and M . In the numerical approach, in a

theory agnostic setting, one input parameter that must be used is rH because it

enters directly the metric ansätz and the definition of our compactified coordinate

x. We have, however, freedom in the choice of the other input parameter in the

numerics. To the best of our knowledge, so far in the literature for similar problems

[73, 77, 80, 81, 83, 84, 394–396], the other input parameter has always been chosen

as the event horizon angular velocity ΩH . Using this input pair (rH ,ΩH), we find

compatibility with the boundary conditions for the function W if we choose Eqs.

(6.48) and (6.59) at the horizon and infinity, respectively. Then, in the case of a

Kerr black hole, one finds that for a fixed value of rH , two branches of solutions

exist as shown in Fig. 6.2.1. This follows from inverting the relation (6.50). The

first branch of solutions starts at a vanishing value of ΩH (for fixed rH) and exists

until

rHΩH =

√
5
√
5− 11

4
√
2

≈ 0.0750708, (6.63)

at which point

χ =

√√
5− 1

2
≈ 0.786151. (6.64)

Then, a second branch appears, and ΩH tends backwards towards zero. As ΩH → 0

on this second branch, extremal solutions are approached. The existence of two

branches of solutions is not unique to Kerr, and will be observed as well in the

modified theories of gravity to be discussed in this work. We note that the numer-

ical procedure gets rather difficult as near-extremal solutions are approached, as
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Figure 6.2.2: Fiducial grid with Nx × Nθ = 11 × 5, highlighted in blue. The field
equations (residuals) are evaluated in the blue region, with the bound-
ary conditions imposed on the red one. The yellow highlight concerns
the imposition of the condition of Eq. (6.45).

our metric ansätz with the described boundary conditions is not compatible with

extremal solutions.

A novel approach that we can also adopt is to choose the pair (rH , χ) as the

input pair. This input pair is compatible with the W boundary conditions of Eqs.

(6.57) and (6.60) while maintaining the number of input parameters at two. We find

it very convenient to use the dimensionless spin as an input parameter when e.g.

exploring domains of existence, or simply when working on a single solution where

a certain χ is wanted. Our numerical spectral method is not only powerful because

high accuracy solutions are produced, but also because highly non-linear boundary

conditions can be handled with ease (which is the case of the boundary condition of

Eq. (6.60)).

To solve the system of field equations subject to the discussed boundary conditions

we must construct a suitable grid. This is done as follows, where we assume a

resolution Nx ×Nθ. The x points are chosen according to a Gauss-Chebyshev grid

presented in Eq. (6.12), where we take N = Nx − 2, together with the boundary

points x = −1 and x = 1, such that the total number of points in the x direction is

Nx
29. In θ, our points are chosen as in Eq. (6.20), where we take N = Nθ. The x

and θ points together form a grid, as schematically shown in Fig. (6.2.2), in blue.

Assuming a total number of functions to solve for Nfuncs, there are Nfuncs×Nx×Nθ

degrees of freedom (spectral coefficients), as seen from the spectral expansion of

Eq. (6.61). Also from this expansion, we stress that the boundary conditions at

the limiting values θ = 0 and θ = π/2 are automatically satisfied, which facilitates

our numerical scheme a lot. For each value of θ in the grid at the x boundaries

we impose for each function the horizon and asymptotic boundary conditions as

29This approach is also called boundary-bordering in the spectral methods’ literature.
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discussed before. This gives us a total of Nfuncs × 2 × Nθ equations (Fig. 6.2.2,

in red). The remaining Nfuncs × (Nx − 2) × Nθ equations come from imposing the

Nfuncs residuals resulting from the field equations at each non-boundary x value, for

each θ. The number of degrees of freedom is then equal to the number of equations

to solve, as it should. A small caveat – the absence of conical singularities imposes

that Eq. (6.45) must be obeyed (for our coordinate range, h = 1 at θ = 0). While

we could leave this condition outside the numerical scheme and use it as another

test to the code, we find that imposing it allows obtaining solutions with (much)

higher accuracy. In our particular implementation, we have swapped the evaluation

of one of the residuals at θ = 0 (for all interior values of x)30 with the condition of

Eq. (6.45), see Fig. 6.2.2 in yellow.

6.2.3.1 Numerical Approach: A summary

Here we summarize our numerical approach for clarity. To solve the field equa-

tions, some preliminary work must be done. First, we employ the metric ansätz

of Eq. (6.31) which contains four unknown functions, f , g, h, and W . Plug-

ging this metric ansätz onto the field equations of the theory, a set of non-linear

coupled PDEs depending on the functions and their first and second derivatives

(F , ∂rF , ∂2rF , ∂θF , ∂2θF , ∂xθF) is obtained. The set of field equations is then ex-

pressed in terms of the compactified coordinate x defined in Eq. (6.54) and put

in residual form (i.e., R (x, θ, ∂iF) = 0), and the same is done for the appropriate

boundary conditions as discussed. This part of the process is usually done resorting

to a computer algebra system such as Mathematica, Maple or SageMath31. The

residuals (and appropriate Jacobian) are then exported to a coding file in order to

solve the problem using the developed numerical infrastructure. Each function is

expanded in a spectral series given by Eq. (6.61) and the input parameters are then

specified (depending on the chosen boundary conditions for the function W ). To

successfully solve the field equations, a good initial guess must be provided. For this,

we interpolate the functions of the known Kerr solution using Eq. (6.62), obtaining

appropriate spectral coefficients to be provided as a good initial guess. If new fields

are present, as is the case with modified theories, we typically take advantage of

perturbative solutions and interpolate them as a guess.

To speed up the solver, the values of our basis functions and their first and second

30We empirically found that any of the field equations should equally valid to remove for this
process, resulting in similar outcomes

31In this work we have used Mathematica along with the OGRe package [406] to obtain the explicit
field equations of many theories.
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derivatives are calculated at all the grid points and stored, such that no repeated

evaluations are performed. Another optimization that we found particularly impact-

ful was to store the values on the grid of the trigonometric functions that typically

appear in the residuals, sin θ and cos θ.

Once a solution is obtained, the appropriate physical quantities can be extracted,

as discussed next, and the solution can be used for numerous investigations.

6.2.4 Physical Properties of Stationary and Axisymmetric

Black Holes

Once we have obtained a stationary and axisymmetric black hole solution, we can

extract important quantities of physical relevance. In this section, we review many

of quantities that one can extract from the solutions, and how these can be used to

test the accuracy of the code.

6.2.4.1 Quantities of interest

Starting with the asymptotic quantities, we have seen that the mass M and angular

momentum J can be extracted from the asymptotic expansion of Eq. (6.40) or Eq.

(6.41). In terms of the coordinate x these are given by

M = rH (1 + ∂xf) |x=1, J = −r2H∂xW |x=1. (6.65)

We remark that such simple expression for the extraction of J is the reason why we

have defined the functionW in this way – such that its decay is of the form ∼ 1/r, al-

lowing for more accurate results. In a circular spacetime, the zeroth law of black hole

mechanics holds, which means that the surface gravity is constant on the horizon of

the stationary black hole. The surface gravity is defined as κ2 = −1/2(∇µξν)(∇µξν),

where ξ was defined in Eq. (6.33). The event horizon temperature can be obtained

from the surface gravity as

TH =
κ

2π
=

1

2πrH

f√
gh

∣∣∣∣
x=−1

. (6.66)

The induced metric on the horizon is

dΣ2 = hijdx
idxj = r2H

g

f

[
hdθ2 + sin2 θdφ2

]∣∣∣∣
x=−1

. (6.67)
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From it we can compute several quantities of interest, the most important being the

event horizon area

AH =

∫
H

√
hdθdφ = 2πr2H

∫ π

0

dθ sin θ
g
√
h

f

∣∣∣∣∣
x=−1

. (6.68)

Also, of importance is the entropy which is given in the Iyer-Wald formalism by [407]

S = −2π

∫
H

δL
δRµναβ

ϵµνϵαβdA

∣∣∣∣
on−shell

(6.69)

where ϵµν is the binormal vector to the event horizon surface. In the case of a Kerr

black hole the above expression reduces to the simple form S = AH/4. The horizon

and asymptotic quantities are connected via the Smarr type relation [407,408]

M = 2THS + 2ΩHJ − 2

∫
Σ

d3x
√
−gL

∣∣∣∣
on−shell

. (6.70)

The Smarr relation is extremely important when studying numerical solutions as

it provides a test to the code that relates physical quantities obtained on the hori-

zon and asymptotic regions, allowing us to estimate the accuracy of the numerical

method. Also of interest is the perimetral radius R which is a geometrically sig-

nificant radial coordinate such that a circumference along the equatorial plane has

perimeter 2πR. It is related to the coordinate r by

R =
√
gϕϕ
∣∣
θ=π/2

=

√
g

f
r

∣∣∣∣
θ=π/2

. (6.71)

To explore the horizon geometry, it is useful to define the horizon circumference

along the equator

Le = 2πRH , (6.72)

and along the poles

Lp = 2

∫ π

0

√
gθθ|x=−1dθ = 2rH

∫ π

0

√
gh

f

∣∣∣∣∣
x=−1

dθ. (6.73)

With these two quantities, we can define the sphericity

s =
Le

Lp

. (6.74)
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For a Kerr black hole s ≥ 1, with s increasing with spin. That means that spin

deforms the horizon towards oblateness. The linear velocity of the horizon quantifies

how fast the null geodesics generators of the horizon spin relative to a static observer

at infinity and is given by

vH = ΩHRH . (6.75)

For a Kerr black hole we have in terms of M and rH

J =M2

√
1−

(
2rH
M

)2

,

TH =
1

4πM
(
1 + M

2rH

) ,
AH = 8πM2

(
1 +

2rH
M

)
Le = 4πM,

Lp = 4M

√
2

(
1 +

2rH
M

)
EllipticE

(
1

2

[
1− 2rH

M

])
,

RH = 2M,

(6.76)

where EllipticE denotes the complete elliptic integral of the second kind, and also

note that 2rH/M =
√

1− χ2. Also, the Kerr solution is Ricci flat, and thus the GR

Lagrangian vanishes on-shell and therefore so does the last term in Eq. (6.70).

6.2.4.2 Ergoregion

The ergoregion, defined as the domain outside the event horizon wherein the norm

of the asymptotically timelike Killing vector k = ∂t becomes positive, gµνk
µkν > 0.

It is bounded by the event horizon and by the surface where

gtt = −fN 2 +
g (1−N )2W 2

f
sin2 θ = 0. (6.77)

Within the ergoregion, an object cannot appear stationary with respect to a distant

observer due to the intense frame-dragging.32 Furthermore, ergoregions raise the

possibility of extracting energy from a black hole via the Penrose process, or super-

radiant scattering [409]. Starting from the well-known result for the ergosphere of

32This immediately follows from the fact that the 4-velocity of a massive particle must be timelike,
gµνu

µuν < 0. Indeed, the worldline of an object standing still at a fixed point implies that
u = ∂t, and if gtt ≥ 0, then gµνu

µuν ≥ 0.
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Figure 6.2.3: Ergoregion of a Kerr black hole with χ = 0.3 (orange), χ = 0.6 (green),
and χ = 0.8 (red) visualized on the X − Z plane. The event horizon
is shown in blue.

a Kerr black hole in Boyer-Lindquist coordinates and inverting the relation of Eq.

(6.42) we obtain that in quasi-isotropic coordinates the ergosphere of a Kerr black

hole is located at

rKerr
E =

rH√
1− χ2

(√
1− χ2 cos2 θ + χ sin θ

)
, (6.78)

where the subscript “E” refers to “ergoregion”. Due to the symmetries of our

problem, we need only consider the range θ ∈ [0, π/2]. To visualize the ergoregion,

we introduce the coordinates

X =
r

rH
sin θ, Z =

r

rH
cos θ. (6.79)

In Fig. 6.2.3 we observe the ergoregion of a Kerr black holes in the X −Z plane for

several values of dimensionless spin.

6.2.4.3 Petrov type

The Petrov classification allows for a kinematic characterization of the gravitational

field in a coordinate independent manner using algebraic properties of the Weyl ten-

sor Cµναβ, namely its number of distinct principal null directions. This classification

is useful e.g. when searching for exact solutions, or for a Carter-like constant [410].

Using the Newman-Penrose formalism, the information is contained in five complex

scalars, known as the Weyl scalars. With the null tetrad {lµ, nµ,mµ,mµ}, where lµ
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Type Conditions
O ψ0 = ψ1 = ψ2 = ψ3 = ψ4 = 0
I D ̸= 0
II D = 0, I ̸= 0, J ̸= 0, K ̸= 0, N ̸= 0
III D = 0, I = J = 0, K ̸= 0, L ̸= 0
N D = 0, I = J = K = L = 0
D D = 0, I ̸= 0, J ̸= 0, K = N = 0

Table 6.2.1: Summary of Petrov classification.

and nµ are real, and mµ,mµ are complex conjugate satisfying the orthonormality

conditions lµnµ = 1, mµmµ = −1 and all other products zero, the Weyl scalars are

defined as
ψ0 = −Cµναβl

µmνlαmβ,

ψ1 = −Cµναβl
µnνlαmβ,

ψ2 = −Cµναβl
µmνmαnβ,

ψ3 = −Cµναβl
µnνmαnβ,

ψ4 = −Cµναβn
µmνnαmβ.

(6.80)

With the above scalars, the following Lorentz invariant quantities can be constructed

I = ψ0ψ4 − 4ψ1ψ3 + 3ψ2
2,

J = −ψ3
2 + ψ0ψ2ψ4 + 2ψ1ψ2ψ3 − ψ4ψ

2
1 − ψ0ψ

2
3,

D = I3 − 27J2,

K = ψ2
4ψ1 − 3ψ4ψ3ψ2 + 2ψ3

3,

L = ψ4ψ2 − ψ2
3,

N = 12L2 − ψ2
4I.

(6.81)

Given the above quantities, it is possible to determine the Petrov type of a given

spacetime. The classification is summarized in Table 6.2.1 [411]. In particular, a

spacetime is said to be algebraically special if D = 0. The Kerr(-Newman) spacetime

is Petrov type D. In a numerical setup, we also find useful to introduce the speciality

index defined as [412]

S =
27J2

I3
. (6.82)

With an appropriate choice of tetrad, following Ref. [412], it is possible to gauge
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away ψ1 and ψ3 to zero. Such a tetrad would be for example

lµ =

√
gφφ

2
(
g2tφ − gttgφφ

)
1, 0, 0,−

gtφ +
√
g2tφ − gttgφφ

gφφ

 ,

nµ =

√
gφφ

2
(
g2tφ − gttgφφ

)
1, 0, 0,−

gtφ −
√
g2tφ − gttgφφ

gφφ

 ,

mµ =
1√
2

(
0,

i
√
grr

,
1

√
gθθ

, 0

)
.

(6.83)

6.2.4.4 Marginal Stable Circular Orbits: Light Rings and ISCO

The study of marginal stable circular orbits is of high relevance. The innermost

stable circular orbit (ISCO) of massive particles is the smallest possible radius for

a stable circular orbit and is often taken to mark the inner edge of an accretion

disk around a black hole. Accelerated charged particles orbiting the black hole emit

synchroton radiation whose physical properties are connected with the frequency of

geodesics at the ISCO. Therefore, physical properties of an astrophysical black hole

can be inferred via measurements of the ISCO through accretion disks.

Light rings are circular null geodesics, typically unstable, allowing light to encircle

a black hole before being scattered to infinity or falling into the event horizon. From

an observational point of view, they are important for observations made with the

Event Horizon Telescope as they are intimately connected with the shadow of the

black hole [413].

To compute the ISCO and light rings we follow Ref. [402]. We start by considering

the line element of Eq. (6.31) in the form

ds2 = gttdt
2 + grrdr

2 + gθθdθ
2 + gφφdφ

2 + gtφdtdφ. (6.84)

The two independent killing vectors of the spacetime, kµ = ∂t and Φµ = ∂φ, have

the associated conserved reduced energy E and angular momentum L

E = −kµ
dxµ

dλ
= −gttṫ− gtφφ̇,

L = Φµ
dxµ

dλ
= gtφṫ+ gφφφ̇,

(6.85)
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where ≡̇d/dλ. The above expressions can be rearranged in terms of ṫ and φ̇

ṫ =
Egφφ + Lgtφ
g2tφ − gttgφφ

,

φ̇ = −Egtφ + Lgtt
g2tφ − gttgφφ

.

(6.86)

Considering orbits restricted to the equatorial plane, θ = π/2, the condition associ-

ated with the normalization of the four-velocity of the particles becomes

−ϵ = gttṫ
2 + grrṙ

2 + gφφφ
2 + 2gtφṫφ̇, (6.87)

with ϵ = {0, 1,−1} for a massless, massive and tachyon particle, respectively. We

disregard ϵ = −1 from now on. Substituting the expressions of Eq. (6.86) in the

above condition, and solving for ṙ2, we can define the effective potential

Ueff =
1

grr

(
−ϵ+ E2gφφ + 2ELgtφ + L2gtt

g2tφ − gttgφφ

)
, (6.88)

such that

ṙ2 = Ueff . (6.89)

The conditions for a circular orbit are ṙ = 0 and r̈ = 0, from which follows that

Ueff = 0,
dUeff

dr
≡ U ′

eff = 0, (6.90)

at the location of orbit. The dash denotes a derivative with respect to r. These

conditions can further be rearranged into algebraic equations that must be satisfied

simultaneously

E2gφφ + 2ELgtφ + L2gtt − ϵ
(
g2tφ − gttgφφ

)
= 0,

E2g′φφ + 2ELg′tφ + L2g′tt − ϵ
(
g2tφ − gttgφφ

)′
= 0.

(6.91)

Light Rings

For a light particle, ϵ = 0. In this case, calculations are simpler than in the massive

case. Solving the first equation for L in (6.91) and substituting in the second we

obtain

g′φφ + 2g′tφ

gtφ ±
√
g2tφ − gttgφφ

gtt

+ g′tt

gtφ ±
√
g2tφ − gttgφφ

gtt

2

= 0, (6.92)
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which is to be evaluated on a radius r. The smallest root of the above equation is

the location of the light ring.

In Boyer-Lindquist coordinates the location of the circular photon orbits of a Kerr

black hole are given by [414]

rLR±
BL = 2M

(
1 + cos

(
2

3
arccos (∓χ)

))
, (6.93)

where the plus sign refers to co-rotating photons, and the minus sign to counter-

rotating photons. In quasi-isotropic coordinates the location of the circular photon

orbits can be obtained using the inverse transformation in Eq. (6.43).

ISCO

For a massive particle, ϵ = 1. The ISCO is located at a saddle point of the effective

potential, such that the condition U ′′
eff = 0 should be imposed. This is equivalent

to imposing

E2g′′φφ + 2ELg′′tφ + L2g′′tt − ϵ
(
g2tφ − gttgφφ

)′′
= 0, (6.94)

in addition to Eq. (6.91). To find the location of the ISCO, we first solve Eq. (6.91)

for E and L as functions of the metric functions and their first derivatives, and

later substitute these onto Eq. (6.94). Similarly to the light-ring case, we obtain a

second order equation to be solved for r, the smallest root of which corresponds to

the location of the ISCO.

In Boyer-Lindquist coordinates the location of the circular massive particle orbits

of a Kerr black hole are given by [414]

rISCO±
BL =M

(
3 + Z2 ∓

√
(3− Z1)(3 + Z1 + 2Z2)

)
, (6.95)

where
Z1 = 1 +

(
1− χ2

)1/3 [
(1 + χ)1/3 + (1− χ)1/3

]
,

Z2 =
√
3χ2 + Z2

1 ,

and the plus sign refers to co-rotating particles, and the minus sign to counter-

rotating particles. In quasi-isotropic coordinates the location of the circular orbits

can be obtained using the inverse transformation in Eq. (6.43).

Orbital frequencies at the ISCO and Light Ring

The orbital angular frequency of particles both at the ISCO and light ring is given

by

ω± =
φ̇

ṫ
=

−g′tφ ±
√
g′2tφ − g′ttg

′
φφ

g′φφ
, (6.96)
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where the above expression is to be evaluated at the location of the ISCO/light ring,

ω+ is the angular frequency of co-rotating particles and ω− is the angular frequency

of counter-rotating particles. In the case of a Kerr black hole we have

Mω± = ± 1√
48 cos4

(
1
3
arccos (∓χ)

)
+ χ2

, (6.97)

at the light ring, and

Mω± = ± 1(
rISCO±
BL /M

)3/2 ± χ
, (6.98)

at the ISCO. The orbital frequency at the ISCO is associated with the cut-off fre-

quency of the emitted synchrotron radiation generated from accelerated charges in

accretion disks, and the angular frequency at the light ring is related to the time-

scale of the response of the black hole when it is perturbed (real part of the frequency

of the black hole quasi-normal modes) [415].

6.3 Numerical spinning black hole solutions

In this section we validate our numerical infrastructure against well-known results,

namely the Kerr black hole, and then proceed to use it to obtain spinning black

holes in a modified gravity theory, the Einstein-scalar-Gauss-Bonnet theory.

6.3.1 Validating the code against the Kerr black hole

To validate our numerical infrastructure we will solve the axisymmetric vacuum Ein-

stein equations to numerically obtain the Kerr solution, and compare with analytical

results. We choose the following combination of the field equations, Eµ
ν = 0, which

diagonalizes the equations with respect to the operator ∂2r + r−2∂2θ :

− Eµ
µ + 2E t

t +
2WrH
r2

Eφ
t = 0,

Eφ
t = 0,

Er
r + Eθ

θ = 0,

Eφ
φ − 2WrH

r2
Eφ

t − Er
r − Eθ

θ = 0.

(6.99)

In Fig. 6.3.1 we present the results for the comparison of the metric functions

obtained numerically with the analytically known ones for a Kerr black hole with

χ = 0.6. The initial guess that was used to obtain the results in Fig. 6.3.1 was
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Figure 6.3.1: Comparison between the numerical and analytical results for a Kerr
black hole with χ = 0.6, using Nx = 42, Nθ = 8. The maximum
observed error is of order O (10−13) for the function h, with all other
functions being obtained to machine precision. A Schwarzschild black
hole was used as an initial guess, and we have used rH = 1.

a Schwarzschild black hole with comparable rH . The maximum observed error is

of order O (10−13) for the metric function h, with all other metric functions being

successfully obtained to machine precision. We also explored the whole domain of

existence of Kerr black holes, comparing numerically obtained physically relevant

quantities with analytical ones, see Fig. 6.3.2 below. These include the mass M ,

angular momentum J , horizon area AH and Hawking temperature TH of the black

holes. Furthermore, we computed the (normalized) Smarr relation in Eq. (6.70).

Overall, in all quantities we have found remarkable agreement between numerical

and analytical results, with the Smarr relation providing accurate error estimates.

We also observe that errors are higher when the black holes approach extremality

(χ→ 1). This is because in the extremal limit, our metric ansätz is not valid.

6.3.2 Einstein-scalar-Gauss-Bonnet Gravity

Einstein-scalar-Gauss-Bonnet (EsGB) theories of gravity were introduced in the first

chapter, and will be discussed in more detail in chapter 7. For convenience, we will

reproduce here the action of the theory and its field equations. EsGB theories are
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Figure 6.3.2: Comparison of numerical results for M , J , AH and TH with analytical
ones, throughout the domain of existence of Kerr black holes. Each
point represents a different black hole solution. Numerical results were
obtained using Nx = 50, Nθ = 12. We observe remarkable agreement
and small errors overall.
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described by the action

S =
1

16π

∫
d4x

√
−g
(
R− (∇ϕ)2 + α

4
ξ (ϕ)G

)
, (6.100)

which contains a new real scalar field ϕ, which couples non-minimally to the Gauss-

Bonnet term via the coupling function ξ(ϕ), and α is a coupling constant with

dimensions of length squared. No known closed-form black hole solutions are known

in these models, even in the static case. One is therefore forced to resort to numerical

methods to study black holes in these theories.

The field equations of the action (6.100) are

Eµν ≡ Gµν − Tµν = 0, (6.101)

where

Tµν = ∇µϕ∇νϕ− 1

2
gµν (∇ϕ)2 + αPµανβ∇α∇βξ (ϕ) ,

and

Pαβµν ≡ 1

4
ϵαβγδR

ρσγδϵρσµν = 2 gα[µGν]β + 2 gβ[νRµ]α −Rαβµν ,

is the double-dual Riemann tensor (the square brackets denote anti-symmetrization).

The scalar field equation is

Eϕ ≡ □ϕ+
α

8
ξ̇(ϕ)G = 0, (6.102)

where the dot denotes differentiation with respect to the scalar field ϕ. In the

stationary and axisymmetric setting we discussed before, we find that the scalar

field is subject to the boundary conditions [401,402]

∂xϕ = 0, x = −1,

ϕ = 0, x = 1,

∂θϕ = 0, θ = 0, π/2,

(6.103)

while the boundary conditions for the metric functions remain the same.

Black holes in the EsGB theory should obey the Smarr formula (6.70), that be-

comes

M +Ms = 2THS + 2ΩHJ, (6.104)
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where 33

Ms = − 1

4π

∫
d3x

√
−g ξ(ϕ)

ξ′(ϕ)
□ϕ, (6.105)

and the entropy is given by Eq. (6.69) that in the EsGB case becomes

S =
AH

4
+
α

8

∫
H

d2x
√

hξ(ϕ)R(2), (6.106)

where R(2) is the Ricci scalar of the induced metric on the horizon. We will focus

on two coupling examples, the linear coupling

ξ(ϕ) = ϕ, (6.107)

and the exponential coupling

ξ(ϕ) = eγϕ. (6.108)

We find that for the exponential coupling the Smarr relation takes a rather simple

form

M +Qs/γ = 2THS + 2ΩHJ, (6.109)

where Qs is the scalar charge of the solution, appearing in the asymptotic expansion

of the scalar field

ϕ ≈ Qs

r
+O

(
r−2
)
.

It can also be proved that for the linear coupling the following relation holds [416]

Qs = 2παTH . (6.110)

In what follows we use the relations in Eqs. (6.109) and (6.110) to address the

accuracy of our numerical solutions for the exponential and linear couplings respec-

tively. This is necessarily as closed-form solutions are unknown. We use the same

combination of field equations as in the Kerr case (Eq. (6.99)), along with the scalar

field equation (6.102) to solve the system. To solve the system we use a comparable

Kerr black hole as an initial guess for the metric functions, and for the scalar field

33This relation can also be written as

Ms =
1

4π

∫
d3x

√
−g (∇ϕ)2 ∂

∂ϕ

(
ξ(ϕ)

ξ′(ϕ)

)
,

provided the coupling does not obey ξ(ϕ) = ξ′(ϕ) and the scalar field asymptotically vanishes.
This is advantageous from a numerical point of view because no second derivatives of the scalar
field are required, increasing the accuracy in computing Ms.
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Figure 6.3.3: Smarr relation (top) and relation in Eq. (6.110) (bottom) for numerical
solutions in a part of the domain of existence for the theory with the
exponential coupling with γ = 1 and linear coupling, respectively, for
different values of α/r2H . Each point represents a different black hole
solution. Numerical results were obtained using Nx = 50, Nθ = 12.
We observe small errors, similarly to the Kerr case.

we use the perturbative solution [401,402]

ϕ ≈ α

r2H

415− 1047x+ 942x2 − 358x3 + 51x4 − 3x5

12(−3 + x)6
. (6.111)

We present the accuracy estimate results (in a part of the domain of existence)

using the Smarr relation for the exponential coupling and the relation in Eq. (6.110)

for the linear coupling in Fig. 6.3.3. We observe that errors, as measured by the

relations (6.109) and (6.110), are small and similar to those presented for the Kerr

black hole in Fig. 6.3.2, despite a dramatic increase in the complexity and number of

terms in the field equations. Our results also agree remarkably well with perturbative

solutions, such as the ones obtained in Ref. [402].

As another test to the code, in Figure 6.3.4 we plot the accuracy as estimated

by the Smarr relation (6.109) as a function of both resolutions Nx and Nθ. We
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Figure 6.3.4: Smarr relation for numerical solutions with a dilaton coupling (γ = 1)
as a function of the resolution in x (left) and θ (right). We observe
exponential convergence to as the resolution is increased.

observe exponential convergence, similarly to the toy model presented in Fig. 6.1.4.

Note that the Smarr relation provides only an estimate of maximum error – recall

the Kerr case, where most metric functions were actually obtained to a precision of

∼ O (10−16) but the Smarr relation attained errors on the order of ∼ O (10−13).

To further demonstrate the capabilities of our code, in the following we present

some results for the physical properties of EsGB black holes. A plot of the ergoregion

for a dilaton black hole with γ = 1, χ = 0.1 and α/M2 = 1.15 can be found in Fig.

6.3.5. In Fig. 6.3.6 we plot |1−S| as a function of x and θ, where S is the speciality

index defined in Eq. (6.82), for the same EsGB black hole as before, where we can

observe that the spacetime is not algebraically special, being Petrov type I. Spinning

EsGB black holes were always observed to be Petrov type I.34

The perimetral location and angular frequencies at the ISCO and light rings of

EsGB dilaton black holes (γ = 1) are compared with those of a Kerr black hole

(with the same χ and M) in Fig. 6.3.7. Note that we have neglected any couplings

between the dilaton and matter (see e.g. [84,417]). We have compared our results in

the static and slowly rotating cases with those in Ref. [417], observing remarkable

agreement (in the appropriate setup). From Fig. 6.3.7 we observe differences of a few

percent in most cases, with the most drastic differences occurring for the location

of the co-rotating light ring due to its proximity to the horizon. The qualitative

behaviour is as follows: the perimetral radius of both the ISCO and the light ring

decreases with α/M2, and the opposite happens for the angular frequencies35. Co-

rotating orbits are most affected, and black hole spin enhances the differences of

34With our numerical setup, a Kerr black hole typically yields values of |1 − S| on the order of
10−15 everywhere, in good agreement with the fact that it is Petrov type D.

35We note that, similarly to Refs. [401, 402], positive coordinate shifts in the location of the
ISCO/light ring were observed. These are, however, not physically relevant and the perimetral
radius should be used, where negative shifts are observed.

160



6 Numerical Construction of Highly Accurate Spinning Black Holes

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

X

Z

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

X

Z

Figure 6.3.5: Ergosphere for a EsGB dilaton black hole with γ = 1, χ = 0.1 and
α/M2 = 1.15 (red), together with the ergosphere of a Kerr black hole
with the same χ (blue). The event horizon for both is presented in
black.
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Figure 6.3.6: |1−S| plotted as a function of x and θ, where S is the speciality index
defined in Eq. (6.82), for a EsGB dilaton black hole with γ = 1, χ = 0.1
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Figure 6.3.7: Comparison between EsGB dilaton (γ = 1) and Kerr black holes with
the same χ (and M) regarding the perimetral radius and angular fre-
quencies at the ISCO (top) and light ring (bottom) as a function of
α/M2, in a part of the domain of existence of solutions.

co-rotating orbits with respect to the Kerr case.

6.4 Comparison with other codes

Similar codes to the one we have developed in this chapter are scarce. Indeed,

most of the numerical studies of spinning black holes in modified theories of grav-

ity make use of the non-publicly-available FIDISOL/CADSOL solver [418–420],

which implements a finite difference method together with the root finding Newton-

Raphson method. The solver is written in Fortran and was first developed in

the eighties. Works that use the FIDISOL/CADSOL solver can be found e.g.

in Refs. [73, 77, 80, 81, 83, 84, 394–396]. Some of these works have applied the

FIDISOL/CADSOL solver in studies of EsGB gravity, much like we did here. How-

ever, they report an error of order O (10−3), as estimated by the Smarr relation.

In the appendix of Ref. [421], the author gives a comprehensive overview of the

FIDISOL/CADSOL solver, benchmarking it against the Kerr solution, with results

again showing errors several orders of magnitude higher than those presented in Fig.
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6.3.2.

More recently, in Ref. [402] the authors developed the eXtreme Partial Differen-

tial Equations Solver (XPDES) code which is publicly available, to address similar

problems. The code is written in C language, and implements a finite difference

method to solve the field equations, similarly to the FIDISOL/CADSOL package.

It makes use of the softwareMaple to export the field equations to many large C pro-

gramming files. Ref. [402] does not discuss errors as estimated by Smarr relations,

instead, they (also) benchmark their code against the Kerr solution, and compare

their EsGB results to perturbative solutions, finding good agreement. They report

typical maximum errors on obtaining the Kerr solution of O (10−6), which repre-

sents a good improvement when compared with the FIDISOL/CADSOL package,

especially given that the XPDES code is open-source and publicly available.

Our code is written in the Julia programming language, which when compared

with complied languages such as C code makes it logistically easier to use and

adapt, and to implement new models. In our implementation the field equations and

boundary conditions are written in a very simple way. For example, the boundary

condition

f − 2∂xf = 0,

is written as a residual in code language as

f − 2 ∗ dfdx.

The code is memory efficient and fast, making use of pseudospectral methods as

explained above, with solutions to the field equations being obtained in the order

of a few seconds in laptop-class computers. In our (limited) comparisons with the

XPDES code, we found that where our code took only a few seconds the XPDES

code would take minutes to achieve a lower accuracy.

The results of this chapter, for example in Figs. 6.3.2 and 6.3.3, show that the

accuracy of our code is many orders of magnitude better than the accuracy presented

by either the FIDISOL/CADSOL package or even the XPDES code.

Once a solution to the field equations has been obtained, our code has built-

in functions to compute all the physical properties of the black holes discussed in

section 6.2.4, therefore allowing for a simple and comprehensive study of different

models. Given that the code has been completed only recently, we have not yet

applied it widely. A first application in research work is, however, contained the

next chapter. In the future we hope to apply the code to other theories, such as our
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regularized 4DEGB theory, and use it to further constrain them using the physical

properties described.
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Appendix

Appendix 6.A The Kerr-Newman Black Hole

The Kerr-Newman solution solves the Einstein-Maxwell field equations

Gµν = 2

(
F α
µ Fνα − 1

4
gµνFαβF

αβ

)
. (6.112)

The Einstein-Maxwell field equations can be obtained with the following action

principle

S =
1

16π

∫
d4x

√
−g (R− FµνF

µν) , (6.113)

where Fµν = ∇µAν − ∇νAµ is the Maxwell tensor. With the ansätz of Eq. (6.31)

the Kerr-Newman black hole solution reads (in terms of rH , M and Q)

fKN =
(
1 +

rH
r

)2 A
B
,

gKN =
(
1 +

rH
r

)2
,

hKN =
A2

B
,

WKN =
r (2M2 −Q2) + 2M (r2 + r2H)

rHr3B

√
M2 −Q2 − 4r2H

(6.114)

where

A =
r2 (2M2 −Q2) + 2Mr (r2 + r2H) + (r2 − r2H)

2

r4
− (M2 −Q2 − 4r2H)

r2
sin2 θ,

B =

(
A+

(M2 −Q2 − 4r2H)

r2
sin2 θ

)2

− (r2 − r2H)
2
(M2 −Q2 − 4r2H)

r6
sin2 θ,

(6.115)

together with the four-potential

Aµdx
µ =

(
Ãt −

WKN

r
(1−N ) Ãφ sin

2 θ

)
dt+ Ãφ sin

2 θdφ, (6.116)
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where

Ãφ =
Qr
(
1 + M

r
+

r2H
r2

)√
M2 −Q2 − 4r2H

r2
(
1 + M

r
+

r2H
r2

)2
+ (M2 −Q2 − 4r2H) cos

2 θ
, (6.117)

and

Ãt = Φ−
Qr
(
1 + M

r
+

r2H
r2

)
r2
(
1 + M

r
+

r2H
r2

)2
+ (M2 −Q2 − 4r2H) cos

2 θ
+
WKN

r
(1−N ) Ãφ sin

2 θ,

(6.118)

where Q the electric charge and Φ the electrostatic potential (which can be chosen

such that Ãt|rH = 0). This particular choice of functions Ãt and Ãφ for the vector

potential is such that they are optimised for a numerical setup such as ours.

The total angular momentum (per unit mass), a, of the solution is related to M ,

Q and rH via

rH =

√
M2 − a2 −Q2

2
≡ M

2

√
1− χ2 − q2, (6.119)

where we have defined the dimensionless charge

q ≡ Q/M. (6.120)

The electric charge can be read off the asymptotic decay of the temporal part of the

four potential

Ãt = Φ− Q

r
+O

(
r−2
)
. (6.121)

The Kerr-Newman black hole obeys the well-known Smarr relation

M = 2TS + 2ΩHJ + ΦQ. (6.122)

Note that the Kerr-Newman black hole in the quasi-isotropic coordinate system

presented in Eq. (6.31) can be obtained from the standard textbook Boyer-Lindquist

coordinates solution with the radial coordinate transformation

rBL = r +M +
M2 − a2 −Q2

4r
= r

(
1 +

M

r
+
r2H
r2

)
. (6.123)

Details about marginal stable circular orbits in the Kerr-Newman case can be found

in Refs. [422,423].
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of Gauss-Bonnet Black Holes

As discussed in chapter 1, prominent examples of alternative theories of gravity to

General Relativity (GR) are Einstein-scalar-Gauss-Bonnet (EsGB) theories, where

a new fundamental scalar is non-minimally coupled to the Gauss-Bonnet term. Such

models belong to the Horndeski class of theories [104,105], and in the simplest case

their action takes the form

S =
1

16π

∫
d4x

√
−g
(
R− (∇ϕ)2 + α

4
ξ (ϕ)G

)
, (7.1)

where ϕ is a real scalar field, ξ (ϕ) is the (non-minimal) coupling function, and α the

GB coupling constant with dimensions of length squared. Note that even though the

scalar-tensor formulations of 4DEGB discussed in the previous chapters also contain

scalar-Gauss-Bonnet interactions, we will refer to EsGB models as those uniquely

described by an action of the form (7.1). Therefore, in our discussions 4DEGB and

EsGB refer to two different classes of theories. As discussed in Chapter 1, EsGB

models are of wide interest and have been the subject of many works in recent years

(see e.g. [70–77,79–83,85,424–434]), and are motivated from both fundamental and

phenomenological points of view, that we review next. From a fundamental physics

perspective they arise, for example, as the low-energy limit of some string theo-

ries [63–66] where the scalar, the dilaton, couples exponentially to the GB term,

ξ (ϕ) ∼ eγϕ [82, 83, 85, 435]. From a more phenomenological point of view, they

are one of a variety of theories [70–77, 79–83, 85, 424–426, 435–438] that evade the

no hair conjecture [439–446] (see [42] for a review), raising the exciting possibility

they can be constrained by black hole (BH) physics in the strong-curvature regime.

Moreover, in some EsGB theories a dynamical mechanism called spontaneous scalar-

ization [74–76,79–81,435–438] can occur, such that deviations from GR occur only in

the strong-curvature regime. Constraints can be theoretical, such as self-consistency,

or observational in nature. Indeed, only recently has GR begun to be tested ob-

servationally in the strong-field regime [447], with the dawn of gravitational wave
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(GW) astronomy [30,392,448].

In a striking difference to GR, some EsGB black holes (e.g. with linear and

dilatonic couplings) are known to possess a minimum mass solution [71, 82] whose

Hawking temperature is finite and non-vanishing, naturally raising the question of

what is the fate of black holes in EsGB theories. This conundrum is often overlooked,

but was recently explored in Refs. [449,450], where non-linear numerical simulations

of evaporating EsGB dilatonic black holes were performed, supporting the idea that

the end-point of Hawking evaporation is likely a naked singularity, violating weak

cosmic censorship. This is rather concerning scenario, raising question about the

consistency of these EsGB models.

In this chapter our main purpose is to explore further the small mass limit of

black holes for several couplings in the simplest EsGB theories, including those al-

lowing for spontaneous scalarization. Our aim is to investigate self-consistency and

observational constraints imposed on Gauss-Bonnet theories and their coupling de-

pendence. After providing a novel example of a closed-form solution with a small

mass limit, we will complement previous studies on EsGB black hole solutions with

a thorough analytical and numerical exploration of the domain of existence of solu-

tions and their inner structure, linking the existence of an inner singularity to the

repulsive effects originating from the Gauss-Bonnet term, and the structure of the

field equations. Using analytical arguments, this singularity will be shown to overlap

with the event horizon in the small mass limit. We will also provide for the first

time, in this context, an example of a coupling function where the small mass limit

is never reached, showing that a minimum size solution is not a generic feature of

EsGB theories. Finally, we construct stationary black hole solutions by numerically

solving the field equations in axisymmetry, with the aim of exploring the small mass

limit once spin is considered, and finish by imposing the tightest constraints on the

coupling constant, to date, on the dilatonic and linear theories.

The rest of the chapter is organized as follows. First, in Section 7.1, we introduce

a theory which, unlike Eq. (7.1), admits a known analytical example of a static black

hole with a small mass limit. This allows us to explore key features with the advan-

tage of an exact solution. In Section 7.2, we discuss the form of coupling functions in

standard Gauss-Bonnet theories and their corresponding different phenomenologies.

Then in Section 7.3, we explore the small mass limit of static black hole solutions

for these theories, and later impose upper bounds on the coupling constant α in

Section 7.4. Finally, in Section 7.5, we consider how spin changes the picture.
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7.1 Exploring the small mass limit: An analytical

example

No analytic closed-form black hole solution is known to EsGB models described by

the action (7.1). In the existing literature, therefore, the study of critical solutions

in such theories has been performed by resorting to numerical techniques. In this

section, we will explore an illustrative example of a related theory with known

closed-form black hole solutions.

The theory is the gravity with a generalized conformal scalar field theory [4], dis-

cussed in Chapter 5. Its action is given by Eq. (5.19), presented again below

S =

∫
d4x

√
−g

16π

[
R− (∇Φ)2 − R

6
Φ2 − 2λΦ4

+ α

(
log(Φ)G − 4Gµν∇µΦ∇νΦ

Φ2
− 4□Φ(∇Φ)2

Φ3
+

2(∇Φ)4

Φ4

)]
,

(7.2)

which contains the terms present in the EsGB model of Eq. (7.1) with a logarithmic

coupling, as well as other non-trivial interactions including a conformal coupling to

gravity and a conformally invariant quartic self-coupling. Note that for the purpose

of presentation, we have flipped the sign of α relative to the presentation of Ref. [4]

and Chapter 5, and that of typical 4D-Einstein-Gauss-Bonnet studies. Also, we set

β = 1/6 such that the scalar possesses a canonical kinetic term like EsGB models

do. Among the many interesting features of Eq. (7.2), one that stands out is that a

special combination of the field equations decouples from the scalar field, imposing

a proportionality condition between the Ricci and GB scalars (see the discussion in

chapter 5)

R =
α

2
G . (7.3)

This allows for an easy search of closed form solutions. One known closed-form

black hole solution to the above theory (with λ−1 = 48α) is given by

ds2 = −f(r)e−2δ(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (7.4)

with

f(r) = 1− r2

2α

(
1−

√
1− 8Mα

r3

)
, δ(r) = 0,

Φ(r) =
2
√
3α

r
sech

(∫ r dr

r
√
f

)
,

(7.5)
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7 Exploring the Small Mass Limit of Gauss-Bonnet Black Holes

where M is the ADM mass of the black hole, and we take α to be positive. This

is the same black hole solution as presented in section 5.2, here reproduced and

adapted to the conventions used in this chapter. The scalar field can be seen to be

regular on and outside the event horizon located at

rH =M +
√
M2 + α. (7.6)

Analyzing the Ricci scalar of the solution (7.5) we observe that

R ∝ r−3/2
(
r3 − 8Mα

)−3/2
, (7.7)

revealing the existence of two physical singularities, one located at r = 0, and a finite

radius singularity located at the point where the quantity inside the square-root in

Eq. (7.5) for the function f(r) vanishes

r = rs = 2 (Mα)1/3 > 0. (7.8)

To ensure physical behaviour of the solution we require that i) the singularity located

at r = rs is hidden behind the event horizon (rs < rH); ii) the metric functions and

the scalar field in Eq. (7.5) are real. Under these requirements, it can be shown

using Eqs. (7.5), (7.6), and (7.8) that the following condition must hold

M√
α
>

1

2
√
2
≈ 0.353553 , (7.9)

or, in terms of rH ,
rH√
α
>

√
2 ≈ 1.41421 . (7.10)

In other words there is a minimum mass Mmin =
√
α

2
√
2
(or equivalently, a minimum

horizon radius rmin
H =

√
2α), below which solutions can no longer be described by

black holes. For an object with rH = rmin
H , rs and rH overlap, as can be observed

in Fig. 7.1.1. A possible physical interpretation for the minimum mass solution is

related to the repulsive effect of the Gauss-Bonnet term on the solutions. Examining

the components of the effective stress-energy tensor we get

ρ ≡ T t
t,eff = −pr, pr ≡ T r

r,eff =
3
(
1−

√
1− 8αM/r3

)2
4α
√

1− 8αM/r3
, (7.11)

where ρ and pr are interpreted as the effective energy density and radial pressure,
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Figure 7.1.1: Location of the finite radius singularity rs/rH as a function of rH/r
min
H

for the black hole solution of Eq. (7.5). We observe that rs and rH
overlap as rH → rmin

H .

respectively.36 The effective radial pressure is positive everywhere (repulsive), and

diverges at r = rs. Indeed, for the minimum mass solution, the repulsive effects of

the Gauss-Bonnet term dominate over the standard attractive ones, impeding the

existence of a regular horizon.

An interesting remark can be made regarding the Hawking temperature of the

black hole solution given by

TH =
1

4π
f ′(rH) =

r2H + α

4πrH (r2H − 2α)
. (7.12)

This is that not only is the temperature non-zero as rH → rmin
H , but in fact diverges!

Therefore, as the small mass limit is approached, evaporation will not halt and the

black hole will continue to lose its mass at a rate [451]

dM

dt
= − 1

2π

∑
ℓ,m

∫
dω

ωGℓm(ω)

eω/TH ± 1
, (7.13)

where Gℓm(ω) are the graybody factors for modes with frequency ω, angular depen-

dence (ℓ,m), and the plus/minus sign is related to the emission of fermions/bosons.

This intriguing feature casts doubts on the endpoint of Hawking evaporation, with

36Note that the dominant energy condition is saturated and e.g. the weak energy condition is
violated.
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7 Exploring the Small Mass Limit of Gauss-Bonnet Black Holes

the above calculations suggesting that a naked singularity is a strong endpoint can-

didate.

To summarize, there are a few lessons to be learned from the example. First, it

appears that theories with higher-curvature terms are susceptible to the existence

of a finite radius singularity located at rs > 0. The existence of this singularity

is, mathematically, intimately tied to terms containing square-roots in the solutions

to the field equations, and the requirement that solutions are real. From a more

physical point of view, the singularity is related to repulsive effects originating from

the Gauss-Bonnet term. Secondly, a minimum mass solution might exist, where the

location of the finite radius singularity and of the event horizon overlap. In the

above example, this critical solution possesses a non-vanishing Hawking tempera-

ture, causing the black hole to keep losing its mass. It is unknown what would be

the endpoint of evaporation.

7.2 Einstein-scalar-Gauss-Bonnet gravity: Field

Equations and the shape of ξ (ϕ)

We now consider the more standard framework of the action of Eq. (7.1). Varying

with respect to the metric tensor we obtain the Einstein equations

Eµν ≡ Gµν − Tµν = 0, (7.14)

where

Tµν = ∇µϕ∇νϕ− 1

2
gµν (∇ϕ)2 + αPµανβ∇α∇βξ (ϕ) ,

and

Pαβµν ≡ 1

4
ϵαβγδR

ρσγδϵρσµν = 2 gα[µGν]β + 2 gβ[νRµ]α −Rαβµν ,

is the double-dual Riemann tensor (the square brackets denote anti-symmetrization).

The scalar field equation is

Eϕ ≡ □ϕ+
α

8
ξ̇(ϕ)G = 0, (7.15)

where the dot denotes differentiation with respect to the scalar field ϕ.

Starting with the scalar field equation (7.15), we review how different shapes of the

coupling function ξ (ϕ) allow different phenomenologies. First we note that classical

vacuum GR solutions require that ϕ = 0, and that these solutions only exists for

couplings that obey the condition ξ̇(0) = 0. On the other hand solutions of models
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7 Exploring the Small Mass Limit of Gauss-Bonnet Black Holes

whose couplings obey ξ̇(0) ̸= 0 necessarily differ from those of GR and possess a

non-trivial scalar field. Common examples of couplings obeying ξ̇(0) ̸= 0 are

ξ(ϕ) = eγϕ, (7.16)

and

ξ(ϕ) = ϕ. (7.17)

The first, hereby dubbed the dilatonic (or exponential) coupling, is motivated from

string theory, as it is the coupling that appears in the 4D low-energy limit of heterotic

string theory [63–66, 82, 83, 85, 435]. The second – the linear coupling – can be

considered as a linearization of the first around ϕ = 0, and additionally possesses a

shift-symmetry in the scalar field [70,71,73]. For the dilatonic coupling, we focus on

the γ = 1 case. Note, however, that as discussed in [449,450] the properties of black

hole solutions might differ for other values of γ. In fact, for sufficiently negative

values (γ ≲ −1), the small mass limit and the small size (radius) limit might not

coincide, with small mass limit solutions being regular on and outside the horizon.

For all the solutions discussed on this work, however, the minimum size and mass

limits coincide, and therefore we will use these terms interchangeably.

As discussed, if the coupling function satisfies ξ̇(0) = 0, then ϕ = 0 solves the field

equations and the GR solutions are solutions to the model. If however, ξ̈(0) > 0

then the GR solutions are subject to tachyonic instabilities in the large curvature

regime. This can be seen by linearizing the scalar field equation around GR solutions,

for example about the Schwarzschild solution. For a perturbation δϕ (for which

ξ̇(0 + δϕ) ≈ ξ̇(0) + ξ̈(0)δϕ) one finds that(
□GR +

α

8
ξ̈(0)GGR

)
δϕ ≡

(
□GR − µ2

eff

)
δϕ = 0, (7.18)

where GGR = 48M2/r6 = 12r2H/r
6 > 0 (with M being the ADM mass of the black

hole and rH the event horizon radius in Schwarzschild-like coordinates). Thus for

α > 0, if ξ̈(0) > 0 the Schwarzschild black hole may develop an instability (as the

effective mass gets negative, µ2
eff < 0) 37. In this tachyonic regime, it has been shown

that another class of solutions with a non-trivial scalar-field profile coexists with the

GR solutions and are dynamically preferred, triggering spontaneous scalarization.

In order to explore spontaneous scalarization we assume couplings of these type to

37See also Ref. [427] for the special case where ξ̈(0) = 0. In this situation, no tachyonic instability
exists but GR black holes may become unstable against non-linear scalar perturbations, leading
to the formation of scalarized black holes.
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obey the conditions

ξ(0) = 0, ξ̇(0) = 0, ξ̈(0) = 1, (7.19)

The first condition can be imposed as the theory is invariant under ξ(ϕ) → ξ(ϕ)+cte,

the second condition arises by requiring the existence of GR solutions and third con-

dition can be imposed without loss of generality while maintaining a tachyonic insta-

bility in the large curvature regime. An example of such a coupling, commonly used

in the literature [74,77,80,452–456], and that we shall study here is the “quadratic

exponential” coupling

ξ(ϕ) =
1

2β

(
1− e−βϕ2

)
, (7.20)

where β is a constant (not to be confused with β presented in the context of Chapter

5). Note that this choice is by no means unique, and a simple quadratic coupling

ξ(ϕ) = ϕ2/2 (which is a particular case of Eq. (7.20) in the limit of vanishing

β) would suffice to explore spontaneous scalarization per se. However, black hole

solutions in models with a simple quadratic coupling are unstable, contrarily to

those with a quadratic exponential coupling [424], and phenomenologies might differ.

We find that for any coupling obeying the conditions (7.19) the instability of a

Schwarzschild black hole exists for (see Appendix 7.A for a detailed discussion)

rH/
√
α ≲ 0.83. (7.21)

Finally, we would like to point that another type of scalarization is possible, being

induced by spin. For the Kerr metric, while for dimensionless spins χ ≤ 0.5 the

Gauss-Bonnet term is positive definite, this is no longer true when higher spins are

considered [457,458]. Therefore, if along with the other conditions in Eq. (7.19) ξ̈(0)

is negative (instead of positive), fast-spinning Kerr black holes might be subject to a

tachyonic instability [79–81]. A coupling compatible with this type of scalarization

would be the coupling of Eq. (7.20) with a reversed overall sign. We will briefly

discuss spin-induced scalarized solutions in Sec. 7.5.

7.3 Static black hole solutions, and their small

mass limit

In the existing literature, it has been identified that static EsGB black holes exhibit

similar behaviour to that described for the analytic case of Section 7.1. Namely, that
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in these situations there is also a minimum mass solution, beyond which solutions

can no longer be described by black holes [71,82]. In the shift-symmetric case, it was

further noticed that an inner singularity and the horizon overlap in this limit [71].

In this section we explore this small mass limit of EsGB black holes for a generic

coupling function, discussing the domains of existence of solutions. To explore the

small mass limit of static black holes in EsGB models we employ the static and

spherically symmetric line element of Eq. (7.4), for which the field equations are

presented in Appendix 7.B. As already noted above no analytic solutions are known,

and so numerical methods must be used.

Nonetheless, near the boundaries of our domain, analytic methods can be em-

ployed. We assume that a static black hole solution of the model allows the asymp-

totic expansion near the event horizon (hereby denoted by rH)

f(r) =
∞∑
n=1

fn ϵ
n, δ(r) =

∞∑
n=0

δn ϵ
n, ϕ(r) =

∞∑
n=0

ϕn ϵ
n, ϵ ≡ r

rH
− 1 (7.22)

then, the near-horizon field equations to zeroth order in ϵ become

E t
t = Er

r =
2r2H − 2f1r

2
H + αf1ϕ1ξ̇(ϕ0)

2r4H
= 0,

Eθ
θ = Eφ

φ =
(f1(−2 + 3δ1)− 2f2) r

2
H + αf 2

1ϕ1ξ̇(ϕ0)

2r4H
= 0,

Eϕ =
2f1ϕ1r

2
H + (3δ1f1 + f 2

1 − 2f2)αξ̇(ϕ0)

2r4H
= 0,

(7.23)

which can be solved for f1 and ϕ1 in terms of rH and ϕ0, implying the following

relations

f1 =
2r2H

r2H +
√
r4H − 3α2ξ̇(ϕ0)2

, ϕ1 =
−r2H +

√
r4H − 3α2ξ̇(ϕ0)2

αξ̇(ϕ0)
. (7.24)

From these expressions one immediately finds the remarkable result that the horizon

radius has a minimum size beyond which the solution can no longer be described by

a black hole38. This follows by imposing the reality condition that f1 and ϕ1 must

be real, leaving us with the condition

r4H − 3α2ξ̇(ϕ0)
2 ≥ 0 ⇔ rH ≥ rmin

H =

√√
3|αξ̇(ϕ0)| (7.25)

38Hereafter we assume α > 0.
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Figure 7.3.1: Domain of existence of black hole solutions with scalar hair (blue re-
gion), obtained by plotting the condition of Eq. (7.25) for a gen-
eral coupling. The darker blue region denotes the region where the
Schwarzschild black holes are unstable (c.f. Eq. (7.21)), for couplings
obeying the conditions of Eq. (7.19). Beyond the red line, solutions
can no longer be described by black holes.

or equivalently,

ξ̇(ϕ0) ≤
1√
3

(
rH√
|α|

)2

. (7.26)

The above condition defines a region in the (rH/
√
α, ξ̇(ϕ0)) plane within which BH

solutions with a regular (real) scalar field configuration can exist. This is illustrated

in Fig. 7.3.1, where we have also highlighted the spontaneous scalarization condition

(7.21). Note, however, that the minimum horizon radius rmin
H depends on ξ̇(ϕ0). It

is, therefore, conceivable that models where the minimum mass solution as given by

Eq. (7.25) is never reached, depending on the behavior of ϕ0 and of the coupling

function.

To further explore the small mass limit of EsGB black holes, consider again the

field equations given in Appendix 7.B, where we note that a closed-form expression

for δ′(r) can be obtained by a simple algebraic manipulation of the (r, r) equation.

Substituting the value of δ′ onto the other field equations we can further rewrite the
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whole system of field equations in matrix form39

Mx′ = b (7.27)

where M and b are a 2 × 2 matrix and a 2 × 1 column vector respectively, whose

components are given in Appendix 7.B, and x = [f(r) ϕ′(r)]T . Given the above

system of equations, and appropriate initial conditions at some point r = r0, the

existence theorem asserts that a solution to the Cauchy problem to extend our

solution to a neighboring point r1 will exist if [459]

detM|r=r0 ̸= 0. (7.28)

Therefore, if a point r = r∗ exists such that the determinant of M vanishes, the

system of field equations will be ill-posed at that point. The existence of such a

point would indicate the presence of a coordinate or physical singularity, whose na-

ture would have to be studied by other means. From a numerical point of view, any

standard strategy used for numerical integration will stop before r∗. The determi-

nant of M in Eq. (7.27) is given explicitly by

detM =
f (α3f 3A+ α2f 2B + αfC +D)

2r4
(
α(1− 3f)ϕ′ξ̇ + 2r

)2 (7.29)

where the expressions for A,B, C,D are again given in Appendix 7.B. A simple

examination of the determinant (7.29) reveals the existence of two zeros at the

locations where f(r) = 0, and where

α3f 3A+ α2f 2B + αfC +D = 0. (7.30)

The first, is related to the location of the event horizon (r∗ = rH) and the corre-

spondent singularity is a coordinate one. The second case is more intricate, and is

related to a curvature (physical) singularity, as we will see.

As a toy model to help us understand this singularity, consider Eq. (7.30) for

a Schwarzschild background. This can be seen as the zeroth order solution in an

expansion in α of the dilatonic and linear EsGB models. The solution is

r∗ = 61/6 (Mα)1/3 . (7.31)

39Here we have used the (t, t) and the scalar field equations.
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Similarly to the analytical example in Eq. (7.8), we observe that, at least for very

small couplings, there is a singularity obeying (approximately) a proportionality

relation rs ∝ (Mα)1/3.

Let us now explore the behavior of Eq. (7.30) near the event horizon of a EsGB

black hole. Using the same near-horizon expansion as before (Eq. (7.22)), we observe

that

α3f 3A+ α2f 2B + αfC +D = −4r5H

(
1−

(
rmin
H /rH

)4
+

√
1− (rmin

H /rH)
4

)
+O (ϵ) ,

(7.32)

where rmin
H was defined in Eq. (7.25). Thus, we observe that Eq. (7.30) vanishes at

the event horizon if rH = rmin
H , indicating the presence of a singularity (other than

the typical coordinate one). Therefore, we conclude that in the limit rH → rmin
H , an

overlap of the curvature singularity and the event horizon occurs.

In the following sections we will explore the small mass limit of EsGB black

holes in more detail, utilizing non-linear numerical solutions, and taking their inner

structure into account.

7.3.1 Physical Quantities of Interest

To numerically integrate the field equations in order to obtain the black hole so-

lutions, we match the near-horizon expansion of Eq. (7.22) with the appropriate

asymptotic behaviour in far field (r → ∞) limit:

f(r) = 1− 2M

r
+O

(
r−2
)
, δ(r) = O

(
r−2
)
, ϕ(r) =

Qs

r
+O

(
r−2
)
. (7.33)

where M is the ADM mass and Qs the scalar charge of the solution.

Horizon quantities of physical interest include the Hawking temperature TH , the

horizon area AH , and the entropy S. For the line element (7.4) these are given by

TH =
1

4π
f1e

−δ0 , AH = 4πr2H , (7.34)

S =
1

4
AH +

α

8

∫
H

d2x
√
hξ (ϕ)R(2) =

1

4
AH + παξ (ϕ0) (7.35)

where h is the determinant of the induced metric on the horizon, and R(2) its Ricci

scalar [407]. The horizon and asymptotic quantities are related by a Smarr-type

relation given by [407,408]

M +Ms = 2THS, (7.36)
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where

Ms = − 1

4π

∫
d3x

√
−g ξ(ϕ)

ξ̇(ϕ)
□ϕ. (7.37)

For the dilatonic coupling (7.16) the above relation simplifies to Ms = Qs/γ. Fur-

thermore, it can be shown that for the linear coupling (7.17) the following condition

holds [416]

Qs = 2παTH . (7.38)

These conditions can be used to estimate the accuracy of our numerical method.

Once again, an interesting remark can be made about the Hawking temperature,

that in the small mass/size limit gives

lim
rH→rmin

H

TH =
e−δ0

2πrmin
H

> 0 (7.39)

and thus, as in the case of section 7.1, evaporation will not halt in the small mass

limit and the black hole will continue to lose its mass at a rate given by Eq. (7.13),

posing a potential threat to cosmic censorship.

7.3.2 Numerical Method

We now compute numerical solutions to the field equations. We use a Runge-

Kutta-45 ordinary differential equation solver and implement a shooting method

for the parameter ϕ0 such that the asymptotic expansions are matched. In more

detail, the near horizon expansion of Eq. (7.22) is used to set initial conditions for

a numerical integration, with the only free parameter being ϕ0 (once rH and α are

fixed). The field equations are then integrated from the horizon outwards to large

r, the result is compared with the asymptotic expansion at large r, ϕ0 adjusted,

and the procedure repeated until the results of the numerical integration match

the asymptotic expansion. Finally, using the results for the shooting parameters,

the field equations are integrated from the horizon inwards to probe the internal

structure of the black hole. We monitor curvature scalars such as the Ricci and GB

scalars throughout the domain of integration, along with the determinant presented

in Eq. (7.29). To test the accuracy of the numerical solutions we use the relations

(7.36) and (7.38). We remark that errors are on the order of 10−8.
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Figure 7.3.2: Determinant presented in Eq. (7.29) for the solution of the plot on the
upper left in Fig. 7.3.3. We observe that detM has two zeros, one at
the event horizon (blue dot-dashed line) and another at the singularity
rs (red dashed line).

7.3.3 Numerical Results

Using the numerical algorithm described, we have explored the linear (7.17), dila-

tonic (7.16) and quadratic exponential (7.20) couplings. For the latter, we explore

several values of β.

7.3.3.1 Linear and Dilatonic Couplings

For the linear and dilatonic couplings, by monitoring the Ricci and GB scalars, a

finite radius singularity was always found at a radius r = rs > 0 inside the horizon,

whose value ultimately depends on the ratio between the horizon radius and the

coupling α. The singularity is located where detM in Eq. (7.29) vanishes inside the

event horizon, as observed in Fig. 7.3.2.

In Fig. 7.3.3, we plot the metric functions along with the locations of rs and rH

for several values of rmin
H /rH . As the horizon radius approaches rmin

H (as one would

expect to happen dynamically as Hawking evaporation proceeds), the horizon and

the singularity overlap, and numerical solutions reveal divergences of the curvature

invariants, derivatives of the metric functions and the scalar field. That the location

of rs and rH overlap when rH → rmin
H is in agreement with our analytical exploration

shown in Eq. (7.32), and is similar to the behaviour observed in the analytical

example of Section 7.1 (c.f. Fig. 7.1.1 and Fig. 7.3.4, right).

The domains of existence were constructed for both couplings, and can be observed
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Figure 7.3.3: Metric functions and scalar field for four different values of rH/
√
α.

The blue vertical line denotes the event horizon, while the red one
denotes the location of the finite radius singularity rs.
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ξ(ϕ)=eϕ

ξ(ϕ)=ϕ

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

rH / α

ξ (ϕ
0
)

Scalarized BHs
ξ(ϕ)=eϕ

ξ(ϕ)=ϕ

1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0

rH/rH
min

r s
/r
H

Figure 7.3.4: On the left we observe the domain of existence of black holes for the
exponential (dashed line) and linear (dot-dashed line) couplings, de-
limited by the singular line in red. The intersection of the red line with
the black ones denote the point in the domain where the finite radius
singularity and the event horizon overlap, as rH → rmin

H , as observed
in the figure on the right, for both couplings.

in Fig. 7.3.4 (left), where each point on the dashed and dot-dashed lines represent

a numerical black hole solution. Note that the domains of existence end at the red

line, where rH = rmin
H . Assuming that Hawking radiation gradually reduces the mass

of a black hole (and hence rH) for some fixed α, but that our numerical solutions

instantaneously remain an accurate approximation, we see that the fate of all black

holes for both these couplings is to follow the lines on Fig. 7.3.4 and to always reach

the red line.

7.3.3.2 Quadratic exponential (spontaneous scalarization) coupling

Consider now the coupling of Eq. (7.20). We will perform a similar analysis as

before, for several values of β. Note that higher values of β suppress scalarization.

The domains of existence for β = 1, 3, 6 can be observed in Fig. 7.3.5 on the left. We

observe that for the β = 1 case, the domain of existence of solutions is similar to the

dilatonic and linear coupling cases, where the location of the horizon and singularity

overlap as the black hole shrinks, terminating in a critical solution. However, for

β = 3 and 6, the domain of existence is radically different from the previous cases,

as solutions never reach the singular (red) line, allowing the black hole to shrink to

rH ∼ 0. This is possible due to the dependence of rmin
H on the value of the derivative

of the coupling function at the horizon (as in Eq. (7.25)), and this behavior was

observed for values

β > βcrit ≈ 2.33125, (7.40)
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Figure 7.3.5: (Left) Domain of existence of spontaneously scalarized solutions for
β = 1, 3, 6. For values β < βcrit, the characteristics of the domain
of existence are similar to those of the dilatonic and linear couplings,
where the inner singularity and the horizon overlap as the BH shrinks.
For larger values of β, solutions never reach rH = rmin

H , and can shrink
all the way down to rH = 0. (Right) Behavior of the inner finite radius
singularity for β = 3. A finite radius singularity with rs > 0 exists only
until the black hole shrinks to a certain rH/

√
α value, beyond which

there is no singularity other than at the origin. This can be observed
at the bottom figure.

while for lower values the black line would intersect the red one, the domain of

existence ending in a critical solution.

The behaviour of the inner finite radius singularity is rather curious for β > βcrit.

We find there exists a finite radius singularity with rs > 0 only until to a certain

value of rH/
√
α, below which there is no singularity other than at the origin. This

is shown in Fig. 7.3.5 (right) for β = 3, where the dashed line show the part of

the domain of solutions where rs > 0 and the solid line the part for which rs = 0.

The transition is abrupt as shown in Fig. 7.3.5 (bottom), where the location of rs

is plotted as a function of rH .
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Figure 7.3.6: On the left we observe a fiducial black hole solution with no finite radius
singularity (other than at r = 0). Note that detM never vanishes
inside the event horizon and the Ricci scalar is well-behaved all through
the domain of integration (except at r = 0). On the right we present
the components of the stress-energy tensor ρ and pr (scaled by a factor
of 10−1 for presentation purposes) for the same solution, where we
observe that repulsive effects are maximum near the turning point of
the determinant.

On Fig. 7.3.6 we observe a fiducial numerical black hole solution (along with other

relevant quantities) for which there is no finite radius singularity. Note that detM
is strictly positive inside the event horizon. From a physical point of view we note

that, as seen by the profile of the radial pressure pr in Fig. 7.3.6 (right), repulsive

effects are maximum near the turning point of detM. The determinant then gets

further away from zero as the repulsive effects get gradually weaker further inside

the horizon.

An intuitive view on Hawking evaporation for this coupling would be the following.

Starting from a (sufficiently large) Schwarzschild black hole, Hawking radiation will

gradually reduce the mass of the black hole (for some fixed α), until the condition of

Eq. (7.21) is met. A tachyonic instability would then settle in, leading to dynamical

scalarization of the Schwarzschild black hole. The new scalarized solution will itself

evaporate, with the endpoint now depending on the value of β. If β < βcrit, the

picture would be not too different to that of the dilatonic and linear couplings

explored in the previous sections and Refs. [449, 450], where the formation of a

naked singularity is expected. However, if β > βcrit, the evaporation process is

expected to be similar to that of a Schwarzschild black hole, going all the way down

to scales where quantum effects are expected to be important on general grounds,

and our theory breaks down.

Remarkably, the behaviour of the inner singularity for the quadratic-exponential
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coupling shows that the critical solution end point of the domain of existence is not

a generic feature of gravitational theories with higher-order curvature terms.

7.4 Upper bounds on the coupling constant

If evaporation proceeds as expected the behaviour we have been illustrating indicates

that the small mass regime of EsGB theories may constrain the allowed form of

couplings through self-consistency arguments. However, even if evaporation is not

taken into account, the minimum allowed size of black holes can place constraints

on the strength of the allowed coupling through observational constraints.

To do so it is important to take a different form of the action such that results are

consistent across the literature, and thus imposed on equivalent definitions of the

coupling constant. When discussing observational constraints, the action for EsGB

theories is usually presented in the following form [460–464]

S =

∫
d4x

√
−g
(
R

16π
− 1

2
(∇φ)2 + αF (φ)G

)
(7.41)

The mapping of the action (7.1) to the above parametrization can be done as

ϕ =
√
8πφ, α = 64πα, (7.42)

and choosing ξ(ϕ) accordingly such that it is compatible with the definition of F (φ).

To be consistent with the literature, we will constraint the coupling constant α.

For each of coupling functions, we consider the singular static solution with rH =

rmin
H . Each of these singular black holes will have an associated minimum massMmin.

Assume now that an observation was made, in which a black hole was measured to

have mass Mobs. To be consistent with the description of a black hole within the

EsGB theory we impose that the observed mass is greater than the minimum mass

Mobs/
√
α > Mmin/

√
α ≡ mmin. (7.43)

Note that Mmin/
√
α ≡ mmin is a dimensionless quantity that can be extracted from

the numerical solutions. Therefore, reintroducing SI units, we obtain the relation

√
α <

GMobs

c2mmin

. (7.44)

This last equation allows us to impose an upper bound on the coupling constant for
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each coupling function. For the static solutions, we have that

mmin ≈ 4.66717, for F (φ) = φ,

mmin ≈ 4.91642, for F (φ) = eφ.
(7.45)

Considering the case of GW190814 [465], where a compact object with a mass of

aroundMobs = 2.6M⊙ was observed, and assuming it is a black hole, our calculations

give the upper bound

√
α ≲ 0.82 km, for F (φ) = φ,

√
α ≲ 0.78 km, for F (φ) = eφ.

(7.46)

To the best of our knowledge, these constraints are the tightest constraints on α

so far, with the previous strongest upper bound being
√
α ≲ 1.18 km for the linear

coupling [460]. Constraints on the coupling obtained using data from other events

can be found in Table 7.4.1.

Upper bound on
√
α (km)

Event/Ref. Mobs (M⊙) F (φ) = φ F (φ) = eφ

GW190814 [465] 2.59± 0.09 0.82± 0.03 0.78± 0.03

[466] 3.04± 0.06 0.95± 0.02 0.91± 0.02

[467] 3.30+2.8
−0.7 1.04+0.89

−0.22 0.99+0.84
−0.21

GW200115 [468] 5.70+1.8
−2.1 1.80+0.57

−0.66 1.71+0.54
−0.63

Table 7.4.1: Upper bounds on the coupling
√
α obtained using data from several

different events.

7.5 Spinning Black Hole Solutions

So far we have only studied static black hole solutions. In this section we will go

one step further and explore spinning black hole solutions in EsGB theories. For

this we resort, once again, to numerical integration of the field equations given in

Section (7.2). The numerical procedure we adopt follows closely that of chapter 6.

Using this numerical method, in order to assess how the existence of a small mass

limit changes with spin, we have explored the domain of existence of EsGB black

holes for the linear, dilatonic, and quadratic exponential couplings.
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Figure 7.5.1: (Left) Domain of existence of black hole solutions in the
(
M/

√
α, χ

)
plane (shaded region), with dimensionless spins χ ≲ 0.96. The blue
(red) line denotes the critical line for the linear (exponential) coupling.
Note that here we used the convention of Eq. (7.41). (Right) Domain
of existence of scalarized BH solutions in the (M2/α, χ) plane (shaded
region), with dimensionless spins χ ≲ 0.8, for the coupling of Eq.
(7.20) with β = 6. The blue (red) line denotes the existence (critical)
line. For small spins, the absolute values that constitute the critical
line should be taken with a pinch of salt because that region of the
domain is particularly difficult to explore numerically.

For the dilatonic and linear couplings case (F (φ) = eφ and F (φ) = φ in Eq.

(7.41)), the domain of existence of solutions with dimensionless spins χ ≲ 0.96 is

displayed in Fig. 7.5.1 (left), where we observe that higher spins result in higher

values of the minimum allowed mass (for fixed coupling). This is not unexpected,

as spin adds another repulsive effect to the system. In turn, this translates to

tighter upper bounds on the allowed value of α, if spin is considered. Therefore,

the constraints of Table 7.4.1 constitute legitimate upper bounds. From the point

of view of cosmic censorship and Hawking evaporation, black holes in both the

linear and dilatonic theories are expected to give rise to naked singularities as their

endpoint, regardless of the initial spin of the solution, again raising questions about

the consistency of these theories altogether.

We now consider the spontaneous scalarization coupling of Eq. (7.20) with the

particular value β = 6. In the static case we recall that no minimum mass was

observed. We find, however, that when spin is brought into account, the picture

changes and critical solutions do appear to exist, as observed in Fig. 7.5.1 (right).

It is, however, unclear if the existence of rotating critical solutions changes the self-

consistency of the theory from the point of view of cosmic censorship and Hawking

evaporation as it is not obvious that these solutions are ever reached. Indeed, a

possibility is that during evaporation angular momentum is emitted at a (much)
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larger rate than mass, such that a rotating black hole spins down to a non-rotating

state (which has no critical configuration) before most of its mass has been given

up [469]. The endpoint of evaporation for this coupling is therefore an open question

and constitutes an avenue of further research.

Finally, we have obtained preliminary results for spin-induced scalarized black

holes, exploring several values of β (for the coupling of Eq. (7.20) with an overall

reversed sign). In all cases, critical solutions were reached, in agreement with the

results of Refs. [80,81].
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Appendix

Appendix 7.A Onset of instability and

spontaneous scalarization of a

Schwarzschild black hole

Let us solve the perturbed scalar field equation (7.18) in a Schwarzschild spacetime

background given by the line element of Eq. (7.19) with

f(r) = 1− rH
r
, δ(r) = 0, (7.47)

where rH = 2M . Taking into account that the background geometry is static and

spherically symmetric, the scalar field perturbation can be separated in the following

way

δϕ =
u(r)

r
e−iωtYℓ,m(θ, φ), (7.48)

where Yℓ,m(θ, φ) are the spherical harmonics. The resulting equation for the radial

part takes a Schrodinger-like form (ℓ = 0)

du

dr∗
+
(
ω2 − Veff

)
u = 0, (7.49)

where dr∗ = dr/f(r) and

Veff =
(
1− rH

r

)(rH
r3

− 3αr2H
2r6

)
. (7.50)

A sufficient condition for the existence of an unstable mode (bound state as in

quantum mechanics) is∫ +∞

−∞
Veff (r

∗)dr∗ =

∫ +∞

rH

Veff (r)

1− rH
r

dr < 0. (7.51)
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The above condition gives rH/
√
α <

√
3/5 ≈ 0.774597 (or equivalently, M/

√
α ≲

0.387298). Therefore, Schwarzschild BHs with horizon radius obeying the previous

condition, should be unstable in this framework. This, in turn, can be translated

into a curvature condition: when the Gauss-Bonnet curvature at the horizon obeys

α2GGR|rH >
100

3
,

the Schwarzschild BH should be unstable. This is only a sufficient condition for

instability, but bifurcation of solutions actually occurs for slightly smaller curvature.

To find the onset of instability we solve numerically the Schrödinger-like equation

such that ω2 = 0 (when ω2 < 0 the tachyonic instability settles in). We find that the

onset of instability occurs approximately at rH/
√
α ≈ 0.83. This condition imposes

a boundary on the domain of existence of (spontaneously) scalarized solutions. This

result is valid for any coupling obeying the conditions of Eq. (7.19).

Appendix 7.B EsGB Field Equations for a

Static and Spherically Symmetric

Background

For a static and spherically symmetric background (7.19), the field equations take

the form

E t
t =

f
(
3αf ′ϕ′ξ̇ −

(
ϕ′2
(
r2 − 2α(f − 1)ξ̈

))
+ 2α(f − 1)ϕ′′ξ̇ − 2

)
− f ′

(
αϕ′ξ̇ + 2r

)
+ 2

2r2
= 0,

(7.52)

Er
r =

α(3f − 1)ϕ′ (f ′ − 2fδ′) ξ̇ − 2rf ′ + r2fϕ′2 + f (4rδ′ − 2) + 2

2r2
= 0, (7.53)

Eθ
θ = Eφ

φ =
1

2r

[
f
(
αf ′′ϕ′ξ̇ − 2rδ′2 + 2δ′ + 2rδ′′ − rϕ′2

)
+ f ′

(
δ′
(
3r − 5αfϕ′ξ̇

)
+ αf

(
ϕ′2ξ̈ + ϕ′′ξ̇

)
− 2

)
+ αf ′2ϕ′ξ̇ − rf ′′ + 2αf 2

(
ϕ′
((
δ′2 − δ′′

)
ξ̇ − δ′ϕ′ξ̈

)
− δ′ϕ′′ξ̇

)]
= 0,

(7.54)
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and the scalar field equation is

Eϕ =
eδ

r2

[(
r2e−δfϕ′)′ + α

2
ξ̇
(
(f − 1) eδ

(
e−2δf

)′)′]
= 0, (7.55)

where the primes denote a derivative with respect to r.

Once a closed-form expression for δ′ is obtained by solving Er
r, taking the E t

t and

Eϕ equations, the above system can also be written in matrix form (Eq. (7.27)) with

M11 =
α(3f − 1)ϕ′ξ̇ − 2r

2r2
, M12 =

α(f − 1)f ξ̇

r2

M21 =
8r4fϕ′ + α2ϕ′

(
f
(
r2(3f(5f − 4) + 1)ϕ′2 + 6f(f + 1)− 14

)
+ 2
)
ξ̇2 + 2αr

(
f
(
3r2(1− 3f)ϕ′2 − 6f + 4

)
+ 2
)
ξ̇

4r2f
(
α(1− 3f)ϕ′ξ̇ + 2r

)2
M22 =

f
(
αξ̇
(
4r3(1− 5f)ϕ′ + α

(
r2(f(15f − 8) + 1)ϕ′2 − 2(f(3f − 7) + 5)

)
ξ̇
)
+ 8r4

)
+ 2α2ξ̇2

2r2
(
α(1− 3f)ϕ′ξ̇ + 2r

)2
b1 =

f
(
ϕ′2
(
r2 − 2α(f − 1)ξ̈

)
+ 2
)
− 2

2r2

b2 =
αξ̇
(
f
(
−2α(f − 1)(3f − 1)ϕ′2

(
f
(
r2ϕ′2 − 2

)
+ 2
)
ξ̈ + f

(
r4(5f − 1)ϕ′4 + 4r2(21f − 5)ϕ′2 − 12f + 28

)
− 20

)
+ 4
)

4r2f
(
α(1− 3f)ϕ′ξ̇ + 2r

)2
+

−4r3fϕ′
(
f
(
r2ϕ′2 + 6

)
+ 2
)
− 4α2rf2(f(15f − 8) + 1)ϕ′3ξ̇2

4r2f
(
α(1− 3f)ϕ′ξ̇ + 2r

)2
(7.56)

The values appearing in Eq. (7.29) are

A = 3ϕ′ (5r2ϕ′2 − 4
)
ξ̇3,

B = −6ξ̇2
(
6r3ϕ′2 + αϕ′ (r2ϕ′2 − 4

)
ξ̇ − 2r

)
,

C = ξ̇
(
αϕ′ξ̇ + 2r

)(
14r3ϕ′ − α

(
r2ϕ′2 + 12

)
ξ̇
)
,

D = −4r
(
2r4 + αξ̇

(
r3ϕ′ − 3αξ̇

))
.

(7.57)
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We will conclude with a general discussion of our results and possible future direc-

tions.

Chapter 2

In chapter 2 we started by reviewing the Glavan & Lin singular rescaling of the

coupling constant and its shortcomings. Later we used the regularization technique

developed in Reference [112], and applied it to the novel 4DEGB theory in order to

find the regularized action (2.50). This action is free from divergences, and produces

well-behaved second-order field equations that can be used for gravitational physics.

Our theory reproduces the trace of the field equations of the original theory (which is

the only well-defined field equation of the original 4DEGB theory), and complements

it with a full set of off-diagonal equations

We have been unable to show that the scalar degree of freedom ϕ decouples

from the metric-matter system, except in the lone example of the trace equation,

suggesting that the original theory may have a hidden scalar degree of freedom within

it. If this is the case, then the 4DEGB theory belongs to the Horndeski of scalar-

tensor theories, and therefore does not bypass Lovelock’s theorem. This hypothesis

is backed-up by a study of the tree-level scattering amplitudes of gravitons in the

original 4DEGB theory [226].

We note that the action (2.50) is identical to the one that is obtained by perform-

ing a regularized Kaluza-Klein reduction of a (D + p)-dimensional Einstein-Gauss-

Bonnet theory with a flat p-dimensional internal space [256,257] (presented in section

2.3), as well as being the same action that appears in the context of renormaliza-

tion group flows for trace anomalies of the effective action of the Nambu-Goldstone

boson of broken conformal symmetry [470].

While we believe our theory to be a compelling regularization of the original

theory, we note that it is not possible to prove full equivalence of the two theories.

This is because the original formulation of the theory does not have a full set of

4-dimensional field equations that can be written in closed form, but also because

the dimensional regularization procedure used in [110] does not appear to be unique.

That is, there could potentially be arbitrarily many ways in which one could specify
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the geometry of the space-time before taking the limit D → 4. There is no guarantee

that all possibilities will yield the same solutions, and it is therefore very difficult

to establish whether the set of admitted solutions of the two theories will always be

the same.

The equivalence of the 2-dimensional theory presented in Reference [112], and

outlined in Section 2.2.1 does not suffer from the same difficulty. The R = T theory

and the field equations derived from the action (2.38) are demonstrably identical, up

to an additional equation that does not affect the metric-matter system. We expect

this to be a feature of this procedure which is only applicable in 2-dimensions, as

in this case there is only a single degree of freedom in the geometry, which means

that the trace of the field equations contains all information about the theory. This

is not true in dimensions D > 2, so the equivalence of the trace equation does not

directly imply equivalence of all the field equations.

Chapter 3

In chapter 3 we discussed the phenomenology of the 4D-Einstein-Gauss-Bonnet the-

ories, with a focus on the well-defined theories derived in Chapter 2, in particular

the one defined in Eq. (2.50).

We started by generalizing the vacuum BH solution of Glavan & Lin’s 4DEGB

theory to include electric charge and the effects of a cosmological constant. This

BH solution was derived in analytical closed form. Next we studied the asymptotics

of the solution as well as its dependence on the parameters of the model. We found

that there are two branches of solutions, the positive and negative branch. For the

negative branch, the solution resembles the Reissner-Nordström BH in the far field

in the absence of a cosmological constant and that the model allows solutions with

one, two or no horizons depending on if the mass is equal, above or below a certain

critical mass, respectively. Also, in the limit of vanishing coupling constant α it

was found that one recovers the GR Reissner-Nordström-AdS solution. We studied

briefly the thermodynamics of this new BH, obtaining its Hawking temperature and

entropy. Remarkably, for the negative branch, the entropy of the solution obeys the

Hawking-Bekenstein area formula plus a logarithmic correction term, having the

same form as predicted by some quantum gravity theories such as string theory.

Then, we discussed black holes in the counter-term regularized theory derived

in chapter 2. We have shown that the Noether current associated with the scalar

field’s shift-symmetry can be used to show that the black hole solution in Eq. (3.35)

is the unique physical static, spherically-symmetric and asymptotically-flat vacuum

solution to this theory. By further relaxing the assumption of staticity, we found

that no asymptotically-vanishing time-dependent perturbations to these black hole
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solutions are allowed. This establishes a result only slightly less stringent than

Birkhoff’s theorem from GR, and suggests that the non-rotating black hole solutions

of 4DEGB are perturbatively stable.

Motivated by these results, we studied the evaporation properties of black holes

in regularized 4DEGB, finding that evaporation halts at a length scale associated

with the coupling constant of the theory α, leaving relics of size r+ =
√
α that no

longer radiate. Assuming that a population of black holes can form, when large

perturbations re-enter the horizon during the period of radiation domination after

inflation ends, we have estimated the parameter range of the masses of the PBHs at

formation that can constitute relic dark matter, as well as constraints on α that allow

this. These constraints are given in Fig. 3.5, where the PBH mass at formation can

range fromM ≈ 0.4 g toM ≈ 4×105 g when
√
α = ℓpl, and can reachM ≈ 2×1012 g

when
√
α = 10−18m, which is the maximum value of this coupling for which this

scenario is valid.

Afterwards, we explored the cosmologies allowed by the 4DEGB theory in its var-

ious formulations. In particular, we have shown that cyclic cosmologies are allowed

in 4DEGB gravity, although these are not expected to be physically relevant due to

constraints on the coupling constant. The study of a perturbed FLRW Universe was

also performed, with the correspondent perturbation equations to first-order being

obtained.

Chapter 4

In chapter 4 we have studied the observational constraints that can be imposed on

the coupling parameter α of regularized 4DEGB theory in Eq. (2.50). This has

included studying the weak field solutions of this theory, and calculating the equa-

tions of two body dynamics within it. It has also included the bounds that can be

imposed by studying the propagation of electromagnetic and gravitational radiation,

as well as black hole shadows, tabletop experiments, primordial nucleosynthesis of

the elements, and early universe inflation. Our results are summarized in Table 4.1.

The tightest definite constraint in Table 4.1 comes from observations of the peri-

apsis advance of the LAGEOS II satellite, which gives |α| ≲ 1010m2. Other observa-

tions, which often give tight constraints on alternative theories of gravity are much

less constraining, with observations based on gravitational lensing and the Shapiro

time delay effect giving no constraints at all. In particular, the recent constraints on

the propagational velocity of gravitational waves from GW170817, which are often

highly constraining for scalar-tensor theories, are found to be particularly weak in

this case.

Being less conservative, we note that early universe inflation appears to rule out
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all but the smallest negative values of α, and that binary black hole systems offer

the possibility of strong constraints on positive values, leading to the overall range

of allowed values being

0 ≲ α ≲ 108m2 .

These are the strongest constraints that we are aware of, for the regularized 4DEGB

theory (4.1).

Taking our conservative constraint of |α| ≲ 1010m2, it would appear that strong

deviations from GR are only possible in the very early universe (at times t ≲ 10−3s)

or in the immediate vicinity of stellar-mass black holes (M ≲ 100M⊙). This is

promising in one sense, in that the merger events of such objects are now being

recorded by the LIGO/Virgo collaboration with high frequency. It would be par-

ticularly interesting to run numerical simulations of such events in 4DEGB, to de-

termine what observational signatures should be expected to result. On the other

hand, our results suggest that there is unlikely to be any observable consequences

from studying super-massive black holes or the expansion of the late universe. The

accelerated expansion of the Universe being driven by this theory, in particular, is

ruled out to extremely high significance by these bounds.

We consider the work presented on chapter 4 to be a first study on the observa-

tional constraints that can be imposed on 4DEGB, with much remaining work to

be done to make these bounds more precise. In particular, effects such as geodetic

precession and the Nordvedt effect have not been included here at all, as they will

require detailed analyses of spinning and extended bodies in order to be applied.

Likewise, strong field calculations have only been estimated, with more work remain-

ing to be done to fully understand rotating and multi-black hole systems. In the

end, we expect observations of binary black hole mergers and early universe physics

to produce the tightest constraints on the 4DEGB theory, as it is these regimes that

the new non-linear gravitational effects of this theory will become most pronounced.

Chapter 5

In chapter 5 we generalized the well-known conformally coupled scalar field theory

by computing the most general subset of Horndeski theories whose scalar field equa-

tion is conformally invariant. The theory is presented in Eq. (5.19) and is composed

of the Einstein-Hilbert term, a cosmological constant, the action of the typical con-

formally coupled scalar field with a quartic potential, and a scalar-Gauss-Bonnet

sector. This Gauss-Bonnet sector is the same we had found previously in chapter

2, when discussing a well-defined regularization of the Gauss-Bonnet term to four

dimensions. The theory possesses a purely geometrical field equation that restricts
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the possible spacetimes, providing an easy path to find closed-form solutions. Sev-

eral distinct static black hole solutions and a set of modified cosmological equations,

were obtained in closed-form.

The regularized scalar-tensor 4DEGB theories presented in previous chapters had

stumbled into a rather simple purely geometric field equation, despite their highly

non-trivial structure. This chapter then reveals that the existence of such field equa-

tion is intimately connected with (generalized) conformal properties of the scalar

field. It is rather intriguing that the dimensional regularization procedures of the

Gauss-Bonnet term lead to particular cases of the theory derived in this chapter.

Chapter 6

In chapter 6 we explored how to apply pseudospectral methods to solve stationary

and axisymmetric field equations in modified theories of gravity. We started by

introducing the reader to spectral methods, along with the necessary mathematics,

touching topics such as Chebyshev polynomials, Fourier series and Newton’s root

finding method, providing a simple example on how to solve a non-linear ODE with

these techniques. We then made a connection to black hole physics, introducing our

metric ansätz and the Kerr black hole, discussing the boundary conditions of our

problem and the spectral expansions to be used. Later, we described our numerical

method in detail, and discussed many relevant physical quantities and properties

that can be extracted from a stationary and axisymmetric black hole solution. Fi-

nally, we benchmarked our code against the Kerr black hole, finding remarkable

agreement, and used it to obtain spinning black hole solutions in EsGB gravity

for two different couplings, obtaining very small error estimates. We finished by

comparing our code and results to other existing codes with the same goal, con-

cluding that our code is able to obtain more accurate solutions by several orders of

magnitude.

Chapter 7

In chapter 7 we have explored the small mass limit of stationary (both static and

spinning) black holes in theories containing Gauss-Bonnet terms in the action. Start-

ing with an analytical example, we explored the small mass limit of black holes in

the generalized conformal scalar field theory of Chapter 5, which contains a Gauss-

Bonnet term, and where static closed-form black hole solutions are known. These

black holes do possess a minimum mass solution, where an inner singularity and the

event horizon overlap. The inner singularity is intimately connected with the reality

condition (that solutions must be real), because of the existence of terms containing

square-roots on the solution (as is typical in Gauss-Bonnet theories). From a more

physical point of view, the singularity is related to repulsive effects originating from
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the presence of the Gauss-Bonnet term in the theory.

Later, working with a more standard framework for EsGB theories, using numeri-

cal solutions of the field equations, a similar behavior was observed for the dilatonic

(7.16) and linear couplings (7.17). A curious case concerns the quadratic-exponential

coupling (7.20), where for sufficiently high values of the constant β > βcrit (defined

in Eq. (7.40)), no static minimum mass solution was observed, thus showing that

the existence of a critical singular black hole is not a generic prediction of theories

containing Gauss-Bonnet terms. Then, from the point of view of cosmic censorship,

this quadratic-exponential model might be viewed as more realistic option. The

singularity structure for these models with β > βcrit is rather different from that of

the dilatonic and linear and merits a deeper study. Once spin is considered, critical

solutions do exist, but it is unclear if these are ever reached from Hawking evapora-

tion. Also, for the coupling of Eq. (7.20), scalarized black hole solutions exist only

for curvatures above a certain threshold, rendering it particularly interesting.

Finally, we used the results concerning the minimum mass solutions into account

to impose the tightest upper bounds to date on the coupling constant from observa-

tions, for both the dilatonic (
√
α ≲ (0.78± 0.03) km) and linear (

√
α ≲ (0.82± 0.03)

km) theory, with the previous tightest upper bound being
√
α ≲ 1.18 km [460]. Spin

effects were found to only strengthen the previous upper limits.

Future Directions

Looking forward, there is still plenty of work that needs to be done on 4DEGB the-

ories in order to fully understand them. In particular, numerical simulations of the

merger of black holes, and the associated gravitational radiation emitted, is currently

lacking. It is expected that this would provide the best way to constrain this theory,

and so it would be extremely interesting to see such simulations performed. On

the mathematical side, the initial value problem of these theories has not yet been

proven to be well posed (despite these theories belonging to the Horndeski class, and

proofs of well-posedness existing for a sub-set of these [471]). It also appears that

the sub-set of regularized theories without a canonical kinetic term for the scalar

might exhibit a strong coupling issue, but a more careful analysis is also required on

this point. Finally, there are no known exact rotating black hole solutions known

to these theories, despite the simplicity of the spherically symmetric vacuum and

electrovacuum cases. Using the code described in chapter 6 to study these solu-

tions therefore constitutes an avenue of further research. We also note that new

approaches to 4DEGB are also still being developed, such as the intriguing study

in Ref. [278], which considers an extra dimension of vanishing proper length [472].

All of these areas, and more, remain to be fully studied in order to have a complete
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understanding of this interesting collection of theories. We look forward to such

developments, and to seeing where the study of 4D Einstein-Gauss-Bonnet gravity

will be taken next.

Concerning the code presented in chapter 6, we plan on complementing it with its

own ray-tracing algorithm to compute the black hole shadow and the lensing of light

around these objects, given a numerically computed solution. This is rather timely,

given current and future observations by the Event Horizon Telescope collaboration.

Another avenue we intend to follow is to extend the code to numerically obtain other

compact object solutions in generic theories of gravity, such as neutron stars, and

bosonic stars. All in all, this project aims at giving the community a free, easy

to use and open-source code that computes highly accurate astrophysical solutions,

allowing to study, test, and constraint modified gravity and dark matter models.

Making use of the code, we further plan on exploring several modified gravity models.

In particular, we plan on studying spinning black hole solutions in 4D Einstein-

Gauss-Bonnet gravity and the generalized conformally coupled theory.
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and descendants of Lovelock terms,” Phys. Rev. D, vol. 102, no. 2, p. 024054,
2020, 2005.01729. 37

[267] D. A. Easson, T. Manton, and A. Svesko, “D → 4 Einstein-Gauss-Bonnet
gravity and beyond,” JCAP, vol. 10, p. 026, 2020, 2005.12292. 37

[268] R. A. Hennigar, D. Kubiznak, and R. B. Mann, “Rotating Gauss-Bonnet BTZ
Black Holes,” Class. Quant. Grav., vol. 38, no. 3, p. 03LT01, 2021, 2005.13732.
37

[269] Y.-L. Wang and X.-H. Ge, “Black holes in 4D Einstein-Maxwell-Gauss-Bonnet
gravity coupled with scalar fields,” 11 2020, 2011.08604. 37

[270] D. Easson, T. Manton, M. Parikh, and A. Svesko, “The Stringy Origins of
Galileons and their Novel Limit,” 12 2020, 2012.12277. 37

[271] K. Aoki, M. A. Gorji, and S. Mukohyama, “Cosmology and gravitational waves
in consistent D → 4 Einstein-Gauss-Bonnet gravity,” JCAP, vol. 09, p. 014,
2020, 2005.08428. 37, 55, 82, 83, 100

218



Bibliography

[272] K. Aoki, M. A. Gorji, S. Mizuno, and S. Mukohyama, “Inflationary gravi-
tational waves in consistent D → 4 Einstein-Gauss-Bonnet gravity,” JCAP,
vol. 01, p. 054, 2021, 2010.03973. 37, 55, 83

[273] Z.-B. Yao, M. Oliosi, X. Gao, and S. Mukohyama, “Minimally modified gravity
with an auxiliary constraint: A Hamiltonian construction,” Phys. Rev. D,
vol. 103, no. 2, p. 024032, 2021, 2011.00805. 37

[274] J. Pan, X. Qiao, D. Wang, Q. Pan, Z.-Y. Nie, and J. Jing, “Holographic
superconductors in 4D Einstein-Gauss-Bonnet gravity with backreactions,” 9
2021, 2109.02207. 37

[275] M. Heydari-Fard and M. Heydari-Fard, “Null geodesics and shadow of 4D
Einstein-Gauss-Bonnet black holes surrounded by quintessence,” 9 2021,
2109.02059. 37

[276] A. Banerjee, S. Hansraj, and L. Moodly, “Charged stars in 4D Ein-
stein–Gauss–Bonnet gravity,” Eur. Phys. J. C, vol. 81, no. 9, p. 790, 2021.
37

[277] B. Narzilloev, S. Shaymatov, I. Hussain, A. Abdujabbarov, B. Ahmedov, and
C. Bambi, “Motion of Particles and Gravitational Lensing Around (2+1)-
dimensional BTZ black holes in Gauss-Bonnet Gravity,” 9 2021, 2109.02816.
37

[278] S. Sengupta, “4D Einstein-Gauss-Bonnet Gravity Generated By Invisible Ex-
tra Dimensions,” 9 2021, 2109.10388. 37, 197

[279] G. Alkac, G. D. Ozen, and G. Suer, “Cubic Lovelock Gravity in Lower Di-
mensions,” 3 2022, 2203.01811. 37

[280] D. G. Boulware and S. Deser, “String-generated gravity models,” Phys. Rev.
Lett., vol. 55, pp. 2656–2660, Dec 1985. 41, 43

[281] Z.-Y. Fan, B. Chen, and H. Lu, “Criticality in Einstein–Gauss–Bonnet gravity:
gravity without graviton,” Eur. Phys. J. C, vol. 76, no. 10, p. 542, 2016,
1606.02728. 42

[282] P. S. Apostolopoulos, G. Siopsis, and N. Tetradis, “Cosmology from an AdS
Schwarzschild black hole via holography,” Phys. Rev. Lett., vol. 102, p. 151301,
2009, 0809.3505. 42

[283] N. Bilic, “Randall-Sundrum versus holographic cosmology,” Phys. Rev. D,
vol. 93, no. 6, p. 066010, 2016, 1511.07323. 42

[284] J. E. Lidsey, “Holographic Cosmology from the First Law of Thermodynamics
and the Generalized Uncertainty Principle,” Phys. Rev. D, vol. 88, p. 103519,
2013, 0911.3286. 42

219



Bibliography

[285] R.-G. Cai, L.-M. Cao, and Y.-P. Hu, “Corrected Entropy-Area Relation and
Modified Friedmann Equations,” JHEP, vol. 08, p. 090, 2008, 0807.1232. 42

[286] J. E. Lidsey, “Thermodynamics of Anomaly-Driven Cosmology,” Class. Quant.
Grav., vol. 26, p. 147001, 2009, 0812.2791. 42

[287] V. L. Ginzburg, D. A. Kirzhnits, and A. A. Lyubushin, “The role of quan-
tum fluctuations of the gravitational field in General Relativity theory and
Cosmology,” Sov. Phys. JETP, vol. 33, pp. 242–246, 1971. 42

[288] P. O. Mazur and E. Mottola, “Weyl cohomology and the effective action for
conformal anomalies,” Phys. Rev. D, vol. 64, p. 104022, 2001, hep-th/0106151.
42

[289] N. Birrell and P. Davies, Quantum Fields in Curved Space. Cambridge Mono-
graphs on Mathematical Physics, Cambridge University Press, 1984. 42

[290] R.-G. Cai, L.-M. Cao, and N. Ohta, “Black Holes in Gravity with Conformal
Anomaly and Logarithmic Term in Black Hole Entropy,” JHEP, vol. 04, p. 082,
2010, 0911.4379. 43, 62

[291] R.-G. Cai, “Thermodynamics of Conformal Anomaly Corrected Black Holes
in AdS Space,” Phys. Lett. B, vol. 733, pp. 183–189, 2014, 1405.1246. 43, 62

[292] G. Cognola, R. Myrzakulov, L. Sebastiani, and S. Zerbini, “Einstein grav-
ity with Gauss-Bonnet entropic corrections,” Phys. Rev. D, vol. 88, no. 2,
p. 024006, 2013, 1304.1878. 43, 62

[293] P. Horava, “Quantum Gravity at a Lifshitz Point,” Phys. Rev. D, vol. 79,
p. 084008, 2009, 0901.3775. 43

[294] A. Kehagias and K. Sfetsos, “The Black hole and FRW geometries of non-
relativistic gravity,” Phys. Lett. B, vol. 678, pp. 123–126, 2009, 0905.0477.
43

[295] A. M. Polyakov, “Quantum Gravity in Two Dimensions,” Modern Physics
Letters A, vol. 2, pp. 893–898, Jan. 1987. 47

[296] T. Strobl, Gravity in two space-time dimensions. PhD thesis, Aachen, Tech.
Hochsch., 1999, hep-th/0011240. 47

[297] D. F. Carneiro, E. A. Freiras, B. Goncalves, A. G. de Lima, and I. L. Shapiro,
“On useful conformal tranformations in general relativity,” Grav. Cosmol.,
vol. 10, pp. 305–312, 2004, gr-qc/0412113. 48, 50, 115, 116

[298] M. P. Dabrowski, J. Garecki, and D. B. Blaschke, “Conformal transformations
and conformal invariance in gravitation,” Annalen Phys., vol. 18, pp. 13–32,
2009, 0806.2683. 48, 50, 115, 116

220



Bibliography

[299] A. E. Sikkema and R. B. Mann, “Gravitation and Cosmology in Two-
dimensions,” Class. Quant. Grav., vol. 8, pp. 219–236, 1991. 49

[300] R. B. Mann, A. Shiekh, and L. Tarasov, “Classical and Quantum Properties
of Two-dimensional Black Holes,” Nucl. Phys. B, vol. 341, pp. 134–154, 1990.
49

[301] R. B. Mann, S. Morsink, A. Sikkema, and T. Steele, “Semiclassical gravity in
(1+1)-dimensions,” Phys. Rev. D, vol. 43, pp. 3948–3957, 1991. 49

[302] S. M. Morsink and R. B. Mann, “Black hole radiation of Dirac particles in
(1+1)-dimensions,” Class. Quant. Grav., vol. 8, pp. 2257–2268, 1991. 49

[303] R. Mann, “Two dimensional quantum gravity coupled to matter,” Physics
Letters B, vol. 294, p. 310–316, Nov 1992. 49

[304] R. B. Mann, A. Shiekh, and L. Tarasov, “Classical and Quantum Properties
of Two-dimensional Black Holes,” Nucl. Phys. B, vol. 341, pp. 134–154, 1990.
49

[305] C. G. Torre, “Symmetric Criticality in Classical Field Theory,” AIP Conf.
Proc., vol. 1360, no. 1, pp. 63–74, 2011, 1011.3429. 57

[306] M. Cvetic, S. Nojiri, and S. D. Odintsov, “Black hole thermodynamics and
negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet grav-
ity,” Nucl. Phys., vol. B628, pp. 295–330, 2002, hep-th/0112045. 61

[307] R.-G. Cai, “Gauss-Bonnet black holes in AdS spaces,” Phys. Rev. D, vol. 65,
p. 084014, 2002, hep-th/0109133. 61

[308] P. Nicolini, A. Smailagic, and E. Spallucci, “Noncommutative geometry in-
spired Schwarzschild black hole,” Phys. Lett. B, vol. 632, pp. 547–551, 2006,
gr-qc/0510112. 70

[309] S. Kováčik, “R3
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